Update array-iteration.md

pull/674/head
Ankit Mahato 2024-05-31 06:18:47 +05:30 zatwierdzone przez GitHub
rodzic 75423bc5ba
commit 3bebec30e0
Nie znaleziono w bazie danych klucza dla tego podpisu
ID klucza GPG: B5690EEEBB952194
1 zmienionych plików z 23 dodań i 12 usunięć

Wyświetl plik

@ -7,7 +7,7 @@ Understanding these methods is crucial for performing operations on array elemen
- Iterating using basic `for` loop.
**Single-dimensional array iteration**:
### Single-dimensional array
Iterating over a single-dimensional array is straightforward using a basic `for` loop
@ -18,11 +18,18 @@ arr = np.array([1, 2, 3, 4, 5])
for i in arr:
print(i)
```
**Output** :
#### Output
```python
[ 1 2 3 4 5 ]
1
2
3
4
5
```
**Multi-dimensional array**:
### Multi-dimensional array
Iterating over multi-dimensional arrays, each iteration returns a sub-array along the first axis.
@ -32,14 +39,16 @@ marr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
for arr in marr:
print(arr)
```
**Output** :
#### Output
```python
[1 2 3]
[4 5 6]
[7 8 9]
```
## 2. Iterating with nditer
## 2. Iterating with `nditer`
- `nditer` is a powerful iterator provided by NumPy for iterating over multi-dimensional arrays.
- In each interation it gives each element.
@ -51,7 +60,9 @@ arr = np.array([[1, 2, 3], [4, 5, 6]])
for i in np.nditer(arr):
print(i)
```
**Output** :
#### Output
```python
1
2
@ -61,7 +72,7 @@ for i in np.nditer(arr):
6
```
## 3. Iterating with ndenumerate
## 3. Iterating with `ndenumerate`
- `ndenumerate` allows you to iterate with both the index and the value of each element.
- It gives index and value as output in each iteration
@ -74,7 +85,7 @@ for index,value in np.ndenumerate(arr):
print(index,value)
```
**Output** :
#### Output
```python
(0, 0) 1
@ -86,7 +97,6 @@ for index,value in np.ndenumerate(arr):
## 4. Iterating with flat
- The `flat` attribute returns a 1-D iterator over the array.
-
```python
import numpy as np
@ -96,7 +106,7 @@ for element in arr.flat:
print(element)
```
**Output** :
#### Output
```python
1
@ -106,4 +116,5 @@ for element in arr.flat:
```
Understanding the various ways to iterate over NumPy arrays can significantly enhance your data processing efficiency.
Whether you are working with single-dimensional or multi-dimensional arrays, NumPy provides versatile tools to iterate and manipulate array elements effectively.