From 3bebec30e0529dac743073495a12ad85cd1e3904 Mon Sep 17 00:00:00 2001 From: Ankit Mahato Date: Fri, 31 May 2024 06:18:47 +0530 Subject: [PATCH] Update array-iteration.md --- contrib/numpy/array-iteration.md | 35 +++++++++++++++++++++----------- 1 file changed, 23 insertions(+), 12 deletions(-) diff --git a/contrib/numpy/array-iteration.md b/contrib/numpy/array-iteration.md index ac35d95..b0a499f 100644 --- a/contrib/numpy/array-iteration.md +++ b/contrib/numpy/array-iteration.md @@ -7,7 +7,7 @@ Understanding these methods is crucial for performing operations on array elemen - Iterating using basic `for` loop. -**Single-dimensional array iteration**: +### Single-dimensional array Iterating over a single-dimensional array is straightforward using a basic `for` loop @@ -18,11 +18,18 @@ arr = np.array([1, 2, 3, 4, 5]) for i in arr: print(i) ``` -**Output** : + +#### Output + ```python -[ 1 2 3 4 5 ] +1 +2 +3 +4 +5 ``` -**Multi-dimensional array**: + +### Multi-dimensional array Iterating over multi-dimensional arrays, each iteration returns a sub-array along the first axis. @@ -32,14 +39,16 @@ marr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) for arr in marr: print(arr) ``` -**Output** : + +#### Output + ```python [1 2 3] [4 5 6] [7 8 9] ``` -## 2. Iterating with nditer +## 2. Iterating with `nditer` - `nditer` is a powerful iterator provided by NumPy for iterating over multi-dimensional arrays. - In each interation it gives each element. @@ -51,7 +60,9 @@ arr = np.array([[1, 2, 3], [4, 5, 6]]) for i in np.nditer(arr): print(i) ``` -**Output** : + +#### Output + ```python 1 2 @@ -61,7 +72,7 @@ for i in np.nditer(arr): 6 ``` -## 3. Iterating with ndenumerate +## 3. Iterating with `ndenumerate` - `ndenumerate` allows you to iterate with both the index and the value of each element. - It gives index and value as output in each iteration @@ -74,7 +85,7 @@ for index,value in np.ndenumerate(arr): print(index,value) ``` -**Output** : +#### Output ```python (0, 0) 1 @@ -86,7 +97,6 @@ for index,value in np.ndenumerate(arr): ## 4. Iterating with flat - The `flat` attribute returns a 1-D iterator over the array. -- ```python import numpy as np @@ -96,7 +106,7 @@ for element in arr.flat: print(element) ``` -**Output** : +#### Output ```python 1 @@ -105,5 +115,6 @@ for element in arr.flat: 4 ``` -Understanding the various ways to iterate over NumPy arrays can significantly enhance your data processing efficiency. +Understanding the various ways to iterate over NumPy arrays can significantly enhance your data processing efficiency. + Whether you are working with single-dimensional or multi-dimensional arrays, NumPy provides versatile tools to iterate and manipulate array elements effectively.