kopia lustrzana https://github.com/animator/learn-python
Update array-iteration.md
rodzic
75423bc5ba
commit
3bebec30e0
|
@ -7,7 +7,7 @@ Understanding these methods is crucial for performing operations on array elemen
|
||||||
|
|
||||||
- Iterating using basic `for` loop.
|
- Iterating using basic `for` loop.
|
||||||
|
|
||||||
**Single-dimensional array iteration**:
|
### Single-dimensional array
|
||||||
|
|
||||||
Iterating over a single-dimensional array is straightforward using a basic `for` loop
|
Iterating over a single-dimensional array is straightforward using a basic `for` loop
|
||||||
|
|
||||||
|
@ -18,11 +18,18 @@ arr = np.array([1, 2, 3, 4, 5])
|
||||||
for i in arr:
|
for i in arr:
|
||||||
print(i)
|
print(i)
|
||||||
```
|
```
|
||||||
**Output** :
|
|
||||||
|
#### Output
|
||||||
|
|
||||||
```python
|
```python
|
||||||
[ 1 2 3 4 5 ]
|
1
|
||||||
|
2
|
||||||
|
3
|
||||||
|
4
|
||||||
|
5
|
||||||
```
|
```
|
||||||
**Multi-dimensional array**:
|
|
||||||
|
### Multi-dimensional array
|
||||||
|
|
||||||
Iterating over multi-dimensional arrays, each iteration returns a sub-array along the first axis.
|
Iterating over multi-dimensional arrays, each iteration returns a sub-array along the first axis.
|
||||||
|
|
||||||
|
@ -32,14 +39,16 @@ marr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
||||||
for arr in marr:
|
for arr in marr:
|
||||||
print(arr)
|
print(arr)
|
||||||
```
|
```
|
||||||
**Output** :
|
|
||||||
|
#### Output
|
||||||
|
|
||||||
```python
|
```python
|
||||||
[1 2 3]
|
[1 2 3]
|
||||||
[4 5 6]
|
[4 5 6]
|
||||||
[7 8 9]
|
[7 8 9]
|
||||||
```
|
```
|
||||||
|
|
||||||
## 2. Iterating with nditer
|
## 2. Iterating with `nditer`
|
||||||
|
|
||||||
- `nditer` is a powerful iterator provided by NumPy for iterating over multi-dimensional arrays.
|
- `nditer` is a powerful iterator provided by NumPy for iterating over multi-dimensional arrays.
|
||||||
- In each interation it gives each element.
|
- In each interation it gives each element.
|
||||||
|
@ -51,7 +60,9 @@ arr = np.array([[1, 2, 3], [4, 5, 6]])
|
||||||
for i in np.nditer(arr):
|
for i in np.nditer(arr):
|
||||||
print(i)
|
print(i)
|
||||||
```
|
```
|
||||||
**Output** :
|
|
||||||
|
#### Output
|
||||||
|
|
||||||
```python
|
```python
|
||||||
1
|
1
|
||||||
2
|
2
|
||||||
|
@ -61,7 +72,7 @@ for i in np.nditer(arr):
|
||||||
6
|
6
|
||||||
```
|
```
|
||||||
|
|
||||||
## 3. Iterating with ndenumerate
|
## 3. Iterating with `ndenumerate`
|
||||||
|
|
||||||
- `ndenumerate` allows you to iterate with both the index and the value of each element.
|
- `ndenumerate` allows you to iterate with both the index and the value of each element.
|
||||||
- It gives index and value as output in each iteration
|
- It gives index and value as output in each iteration
|
||||||
|
@ -74,7 +85,7 @@ for index,value in np.ndenumerate(arr):
|
||||||
print(index,value)
|
print(index,value)
|
||||||
```
|
```
|
||||||
|
|
||||||
**Output** :
|
#### Output
|
||||||
|
|
||||||
```python
|
```python
|
||||||
(0, 0) 1
|
(0, 0) 1
|
||||||
|
@ -86,7 +97,6 @@ for index,value in np.ndenumerate(arr):
|
||||||
## 4. Iterating with flat
|
## 4. Iterating with flat
|
||||||
|
|
||||||
- The `flat` attribute returns a 1-D iterator over the array.
|
- The `flat` attribute returns a 1-D iterator over the array.
|
||||||
-
|
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
@ -96,7 +106,7 @@ for element in arr.flat:
|
||||||
print(element)
|
print(element)
|
||||||
```
|
```
|
||||||
|
|
||||||
**Output** :
|
#### Output
|
||||||
|
|
||||||
```python
|
```python
|
||||||
1
|
1
|
||||||
|
@ -105,5 +115,6 @@ for element in arr.flat:
|
||||||
4
|
4
|
||||||
```
|
```
|
||||||
|
|
||||||
Understanding the various ways to iterate over NumPy arrays can significantly enhance your data processing efficiency.
|
Understanding the various ways to iterate over NumPy arrays can significantly enhance your data processing efficiency.
|
||||||
|
|
||||||
Whether you are working with single-dimensional or multi-dimensional arrays, NumPy provides versatile tools to iterate and manipulate array elements effectively.
|
Whether you are working with single-dimensional or multi-dimensional arrays, NumPy provides versatile tools to iterate and manipulate array elements effectively.
|
||||||
|
|
Ładowanie…
Reference in New Issue