Merge pull request #698 from Rupa-Rd/numpy-datatypes

Numpy array reshape
pull/712/head
Ankit Mahato 2024-05-31 07:20:08 +05:30 zatwierdzone przez GitHub
commit 165639d661
Nie znaleziono w bazie danych klucza dla tego podpisu
ID klucza GPG: B5690EEEBB952194
2 zmienionych plików z 58 dodań i 0 usunięć

Wyświetl plik

@ -3,6 +3,7 @@
- [Installing NumPy](installing-numpy.md)
- [Introduction](introduction.md)
- [NumPy Data Types](datatypes.md)
- [Numpy Array Shape and Reshape](reshape-array.md)
- [Basic Mathematics](basic_math.md)
- [Operations on Arrays in NumPy](operations-on-arrays.md)
- [Loading Arrays from Files](loading_arrays_from_files.md)

Wyświetl plik

@ -0,0 +1,57 @@
# Numpy Array Shape and Reshape
In NumPy, the primary data structure is the ndarray (N-dimensional array). An array can have one or more dimensions, and it organizes your data efficiently.
Let us create a 2D array
``` python
import numpy as np
numbers = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
print(numbers)
```
#### Output:
``` python
array([[1, 2, 3, 4],[5, 6, 7, 8]])
```
## Changing Array Shape using `reshape()`
The `reshape()` function allows you to rearrange the data within a NumPy array.
It take 2 arguments, row and columns. The `reshape()` can add or remove the dimensions. For instance, array can convert a 1D array into a 2D array or vice versa.
``` python
arr_1d = np.array([1, 2, 3, 4, 5, 6]) # 1D array
arr_2d = arr_1d.reshape(2, 3) # Reshaping with 2 rows and 3 cols
print(arr_2d)
```
#### Output:
``` python
array([[1, 2, 3],[4, 5, 6]])
```
## Changing Array Shape using `resize()`
The `resize()` function allows you to modify the shape of a NumPy array directly.
It take 2 arguements, row and columns.
``` python
import numpy as np
arr_1d = np.array([1, 2, 3, 4, 5, 6])
arr_1d.resize((2, 3)) # 2 rows and 3 cols
print(arr_1d)
```
#### Output:
``` python
array([[1, 2, 3],[4, 5, 6]])
```