diff --git a/contrib/numpy/index.md b/contrib/numpy/index.md index 04b4748..50e8046 100644 --- a/contrib/numpy/index.md +++ b/contrib/numpy/index.md @@ -3,6 +3,7 @@ - [Installing NumPy](installing-numpy.md) - [Introduction](introduction.md) - [NumPy Data Types](datatypes.md) +- [Numpy Array Shape and Reshape](reshape-array.md) - [Basic Mathematics](basic_math.md) - [Operations on Arrays in NumPy](operations-on-arrays.md) - [Loading Arrays from Files](loading_arrays_from_files.md) diff --git a/contrib/numpy/reshape-array.md b/contrib/numpy/reshape-array.md new file mode 100644 index 0000000..91da366 --- /dev/null +++ b/contrib/numpy/reshape-array.md @@ -0,0 +1,57 @@ +# Numpy Array Shape and Reshape + +In NumPy, the primary data structure is the ndarray (N-dimensional array). An array can have one or more dimensions, and it organizes your data efficiently. + +Let us create a 2D array + +``` python +import numpy as np + +numbers = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) +print(numbers) +``` + +#### Output: + +``` python +array([[1, 2, 3, 4],[5, 6, 7, 8]]) +``` + +## Changing Array Shape using `reshape()` + +The `reshape()` function allows you to rearrange the data within a NumPy array. + +It take 2 arguments, row and columns. The `reshape()` can add or remove the dimensions. For instance, array can convert a 1D array into a 2D array or vice versa. + +``` python +arr_1d = np.array([1, 2, 3, 4, 5, 6]) # 1D array +arr_2d = arr_1d.reshape(2, 3) # Reshaping with 2 rows and 3 cols + +print(arr_2d) +``` + +#### Output: + +``` python +array([[1, 2, 3],[4, 5, 6]]) +``` + +## Changing Array Shape using `resize()` + +The `resize()` function allows you to modify the shape of a NumPy array directly. + +It take 2 arguements, row and columns. + +``` python +import numpy as np +arr_1d = np.array([1, 2, 3, 4, 5, 6]) + +arr_1d.resize((2, 3)) # 2 rows and 3 cols +print(arr_1d) +``` + +#### Output: + +``` python +array([[1, 2, 3],[4, 5, 6]]) +```