successfully maintained 30khz, lots of optimization of code and buffering allocation

pull/1/head
Simen Svale Skogsrud 2010-03-03 00:26:48 +01:00
rodzic 2be1f473cd
commit df243d2490
5 zmienionych plików z 56 dodań i 102 usunięć

Wyświetl plik

@ -112,7 +112,7 @@ void select_plane(uint8_t axis_0, uint8_t axis_1, uint8_t axis_2)
void gc_init() {
memset(&gc, 0, sizeof(gc));
gc.feed_rate = DEFAULT_FEEDRATE;
gc.feed_rate = DEFAULT_FEEDRATE/60;
select_plane(X_AXIS, Y_AXIS, Z_AXIS);
gc.absolute_mode = true;
}
@ -209,7 +209,7 @@ uint8_t gc_execute_line(char *line) {
if (gc.inverse_feed_rate_mode) {
inverse_feed_rate = unit_converted_value; // seconds per motion for this motion only
} else {
gc.feed_rate = unit_converted_value; // millimeters pr second
gc.feed_rate = unit_converted_value/60; // millimeters pr second
}
break;
case 'I': case 'J': case 'K': offset[letter-'I'] = unit_converted_value; break;

Wyświetl plik

@ -63,90 +63,38 @@ void mc_dwell(uint32_t milliseconds)
mode = MC_MODE_AT_REST;
}
// Calculate the microseconds between steps that we should wait in order to travel the
// designated amount of millimeters in the amount of steps we are going to generate
void compute_and_set_step_pace(double feed_rate, double millimeters_of_travel, uint32_t steps, int invert) {
int32_t pace;
if (invert) {
pace = round(ONE_MINUTE_OF_MICROSECONDS/feed_rate/steps);
} else {
pace = round((ONE_MINUTE_OF_MICROSECONDS/X_STEPS_PER_MM)/feed_rate);
}
st_buffer_pace(pace);
}
// Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
// unless invert_feed_rate is true. Then the feed_rate means that the motion should be completed in
// 1/feed_rate minutes.
void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate)
{
// Flags to keep track of which axes to step
uint8_t axis; // loop variable
int32_t target[3]; // The target position in absolute steps
int32_t steps[3]; // The target line in relative steps
// Setup ---------------------------------------------------------------------------------------------------
PORTD |= (1<<4);
PORTD |= (1<<5);
target[X_AXIS] = round(x*X_STEPS_PER_MM);
target[Y_AXIS] = round(y*Y_STEPS_PER_MM);
target[Z_AXIS] = round(z*Z_STEPS_PER_MM);
PORTD ^= (1<<5);
// Determine direction and travel magnitude for each axis
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
step_count[axis] = labs(target[axis] - position[axis]);
direction[axis] = signof(target[axis] - position[axis]);
}
PORTD ^= (1<<5);
// Find the magnitude of the axis with the longest travel
maximum_steps = max(step_count[Z_AXIS],
max(step_count[X_AXIS], step_count[Y_AXIS]));
PORTD ^= (1<<5);
// Nothing to do?
if (maximum_steps == 0) { PORTD &= ~(1<<4); PORTD |= (1<<5); return; }
PORTD ^= (1<<5);
// Set up a neat counter for each axis
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
counter[axis] = -maximum_steps/2;
}
PORTD ^= (1<<5);
// Set our direction pins
set_stepper_directions(direction);
PORTD ^= (1<<5);
// Ask old Phytagoras to estimate how many mm our next move is going to take us
double millimeters_of_travel =
sqrt(square(X_STEPS_PER_MM*step_count[X_AXIS]) +
square(Y_STEPS_PER_MM*step_count[Y_AXIS]) +
square(Z_STEPS_PER_MM*step_count[Z_AXIS]));
PORTD ^= (1<<5);
// And set the step pace
compute_and_set_step_pace(feed_rate, millimeters_of_travel, maximum_steps, invert_feed_rate);
PORTD &= ~(1<<5);
PORTD &= ~(1<<4);
// Execution -----------------------------------------------------------------------------------------------
target[X_AXIS] = lround(x*X_STEPS_PER_MM);
target[Y_AXIS] = lround(y*Y_STEPS_PER_MM);
target[Z_AXIS] = lround(z*Z_STEPS_PER_MM);
mode = MC_MODE_LINEAR;
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
steps[axis] = target[axis]-position[axis];
}
do {
// Trace the line
step_bits = 0;
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
if (target[axis] != position[axis])
{
counter[axis] += step_count[axis];
if (counter[axis] > 0)
{
step_bits |= st_bit_for_stepper(axis);
counter[axis] -= maximum_steps;
position[axis] += direction[axis];
}
}
}
if(step_bits) {
step_steppers(step_bits);
}
} while (step_bits);
mode = MC_MODE_AT_REST;
if (invert_feed_rate) {
st_buffer_line(steps[X_AXIS], steps[Y_AXIS], steps[Z_AXIS], lround(ONE_MINUTE_OF_MICROSECONDS/feed_rate));
} else {
// Ask old Phytagoras to estimate how many mm our next move is going to take us
double millimeters_of_travel = sqrt(
square(steps[X_AXIS]/X_STEPS_PER_MM) +
square(steps[Y_AXIS]/Y_STEPS_PER_MM) +
square(steps[Z_AXIS]/Z_STEPS_PER_MM));
st_buffer_line(steps[X_AXIS], steps[Y_AXIS], steps[Z_AXIS],
lround((millimeters_of_travel/feed_rate)*1000000));
}
memcpy(position, target, sizeof(target)); // position[] = target[]
}
@ -189,8 +137,3 @@ void set_stepper_directions(int8_t *direction)
((direction[Y_AXIS]&0x80)>>(7-Y_DIRECTION_BIT)) |
((direction[Z_AXIS]&0x80)>>(7-Z_DIRECTION_BIT)));
}
inline void step_steppers(uint8_t bits)
{
st_buffer_step(direction_bits | bits);
}

Wyświetl plik

@ -29,7 +29,7 @@ SerialPort.open('/dev/tty.usbserial-A9007QcR', 9600) do |sp|
sleep 5
ARGV.each do |file|
puts "Processing file #{file}"
prebuffer = $prebuffer ? 7 : 0
prebuffer = $prebuffer ? 12 : 0
File.readlines(file).each do |line|
next if line.strip == ''
puts line.strip

Wyświetl plik

@ -25,6 +25,7 @@
#include "stepper.h"
#include "config.h"
#include <math.h>
#include <stdlib.h>
#include <util/delay.h>
#include "nuts_bolts.h"
#include <avr/interrupt.h>
@ -32,30 +33,30 @@
#include "wiring_serial.h"
#define TICKS_PER_MICROSECOND (F_CPU/1000000)
#define LINE_BUFFER_SIZE 5
#define LINE_BUFFER_SIZE 8
struct Line {
uint32_t steps_x, steps_y, steps_z;
uint32_t maximum_steps;
uint32_t iterations;
int32_t maximum_steps;
uint8_t direction_bits;
uint32_t rate;
}
};
volatile uint8_t line_buffer[LINE_BUFFER_SIZE]; // A buffer for step instructions
struct Line line_buffer[LINE_BUFFER_SIZE]; // A buffer for step instructions
volatile int line_buffer_head = 0;
volatile int line_buffer_tail = 0;
// Variables used by SIG_OUTPUT_COMPARE1A
uint8_t out_bits;
struct Line *current_line;
uint32_t counter_x, counter_y, counter_z;
volatile int32_t counter_x, counter_y, counter_z;
uint32_t iterations;
uint8_t stepper_mode = STEPPER_MODE_STOPPED;
void config_pace_timer(uint32_t microseconds);
void st_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_t rate) {
void st_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_t microseconds) {
// Buffer nothing unless stepping subsystem is running
if (stepper_mode != STEPPER_MODE_RUNNING) { return; }
// Calculate the buffer head after we push this byte
@ -68,18 +69,20 @@ void st_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_t
struct Line *line = &line_buffer[line_buffer_head];
line->steps_x = labs(steps_x);
line->steps_y = labs(steps_y);
line->steps_z = labs(steps_y);
line->steps_z = labs(steps_z);
line->maximum_steps = max(line->steps_x, max(line->steps_y, line->steps_z));
line->iterations = line->maximum_steps;
line->rate = rate;
// Bail if this is a zero-length line
if (line->maximum_steps == 0) { return; };
line->rate = microseconds/line->maximum_steps;
uint8_t direction_bits = 0;
if (steps_x < 0) { direction_bits |= (1<<X_DIRECTION_BIT); }
if (steps_y < 0) { direction_bits |= (1<<Y_DIRECTION_BIT); }
if (steps_z < 0) { direction_bits |= (1<<Z_DIRECTION_BIT); }
line->direction_bits = direction_bits;
// Move buffer head
line_buffer_head = next_buffer_head;
// enable stepper interrupt
TIMSK1 |= (1<<OCIE1A);
}
// This timer interrupt is executed at the pace set with st_buffer_pace. It pops one instruction from
@ -87,6 +90,7 @@ void st_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_t
// five microseconds.
SIGNAL(SIG_OUTPUT_COMPARE1A)
{
PORTD |= (1<<3);
// Set the direction pins a cuple of nanoseconds before we step the steppers
STEPPING_PORT = (STEPPING_PORT & ~DIRECTION_MASK) | (out_bits & DIRECTION_MASK);
// Then pulse the stepping pins
@ -96,18 +100,23 @@ SIGNAL(SIG_OUTPUT_COMPARE1A)
// If there is no current line, attempt to pop one from the buffer
if (current_line == NULL) {
PORTD &= ~(1<<4);
// Anything in the buffer?
if (line_buffer_head != line_buffer_tail) {
PORTD ^= (1<<5);
// Retrieve a new line and get ready to step it
current_line = &line_buffer[line_buffer_tail];
config_pace_timer(current_line->rate);
counter_x = -current_line->maximum_steps/2;
counter_x = -(current_line->maximum_steps/2);
counter_y = counter_x;
counter_z = counter_x;
// move the line buffer tail to the next instruction
line_buffer_tail = (line_buffer_tail + 1) % LINE_BUFFER_SIZE;
}
}
iterations = current_line->maximum_steps;
} else {
// disable this interrupt until there is something to handle
TIMSK1 &= ~(1<<OCIE1A);
PORTD |= (1<<4);
}
}
if (current_line != NULL) {
out_bits = current_line->direction_bits;
@ -116,25 +125,28 @@ SIGNAL(SIG_OUTPUT_COMPARE1A)
out_bits |= (1<<X_STEP_BIT);
counter_x -= current_line->maximum_steps;
}
counter_y += current_line-> steps_y;
counter_y += current_line->steps_y;
if (counter_y > 0) {
out_bits |= (1<<Y_STEP_BIT);
counter_y -= current_line->maximum_steps;
}
counter_z += current_line-> steps_z;
counter_z += current_line->steps_z;
if (counter_z > 0) {
out_bits |= (1<<Z_STEP_BIT);
counter_z -= current_line->maximum_steps;
}
// If current line is finished, reset pointer
current_line->iterations -= 1;
if (current_line->iterations <= 0) {
iterations -= 1;
if (iterations <= 0) {
current_line = NULL;
// move the line buffer tail to the next instruction
line_buffer_tail = (line_buffer_tail + 1) % LINE_BUFFER_SIZE;
}
} else {
out_bits = 0;
}
out_bits ^= STEPPING_INVERT_MASK;
PORTD &= ~(1<<3);
}
// This interrupt is set up by SIG_OUTPUT_COMPARE1A when it sets the motor port bits. It resets
@ -258,7 +270,6 @@ void config_pace_timer(uint32_t microseconds)
TCCR1B = (TCCR1B & ~(0x07<<CS10)) | ((prescaler+1)<<CS10);
// Set ceiling
OCR1A = ceiling;
current_pace = microseconds;
}
int check_limit_switches()

Wyświetl plik

@ -28,7 +28,7 @@
// using a ring buffer (I think), in which rx_buffer_head is the index of the
// location to which to write the next incoming character and rx_buffer_tail
// is the index of the location from which to read.
#define RX_BUFFER_SIZE 256
#define RX_BUFFER_SIZE 200
unsigned char rx_buffer[RX_BUFFER_SIZE];