kopia lustrzana https://github.com/gnea/grbl
first stab at replacing step-buffering with line-buffering
rodzic
36fd3a9bfb
commit
2be1f473cd
4
config.h
4
config.h
|
@ -34,8 +34,8 @@
|
|||
#define Y_STEPS_PER_INCH Y_STEPS_PER_MM*INCHES_PER_MM
|
||||
#define Z_STEPS_PER_INCH Z_STEPS_PER_MM*INCHES_PER_MM
|
||||
|
||||
#define RAPID_FEEDRATE 960.0 // in millimeters per minute
|
||||
#define DEFAULT_FEEDRATE 960.0
|
||||
#define RAPID_FEEDRATE 480.0 // in millimeters per minute
|
||||
#define DEFAULT_FEEDRATE 480.0
|
||||
|
||||
#define STEPPERS_ENABLE_DDR DDRD
|
||||
#define STEPPERS_ENABLE_PORT PORTD
|
||||
|
|
Plik diff jest za duży
Load Diff
186
motion_control.c
186
motion_control.c
|
@ -81,13 +81,7 @@ void compute_and_set_step_pace(double feed_rate, double millimeters_of_travel, u
|
|||
void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate)
|
||||
{
|
||||
// Flags to keep track of which axes to step
|
||||
uint8_t step_bits;
|
||||
uint8_t axis; // loop variable
|
||||
int8_t direction[3]; // The direction of travel along each axis (-1, 0 or 1)
|
||||
int32_t target[3], // The target position in absolute steps
|
||||
step_count[3], // Absolute steps of travel along each axis
|
||||
counter[3], // A counter used in the bresenham algorithm for line plotting
|
||||
maximum_steps; // The larges absolute step-count of any axis
|
||||
int32_t target[3]; // The target position in absolute steps
|
||||
|
||||
// Setup ---------------------------------------------------------------------------------------------------
|
||||
PORTD |= (1<<4);
|
||||
|
@ -164,184 +158,6 @@ void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate
|
|||
void mc_arc(double theta, double angular_travel, double radius, double linear_travel, int axis_1, int axis_2,
|
||||
int axis_linear, double feed_rate, int invert_feed_rate)
|
||||
{
|
||||
uint32_t start_x, start_y; // The start position in the coordinate system local to the circle
|
||||
uint32_t diagonal_error; // A variable to keep track of varations in the error-value during
|
||||
// the tracing of the arc
|
||||
|
||||
int8_t direction[3]; // The direction of travel along each axis (-1, 0 or 1)
|
||||
int8_t angular_direction; // 1 = clockwise, -1 = anticlockwise
|
||||
int32_t x, y, target_x, target_y; // current position and target position in the
|
||||
// local coordinate system of the arc-generator where [0,0] is the
|
||||
// center of the arc.
|
||||
int target_direction_x, target_direction_y; // signof(target_x)*angular_direction precalculated for speed
|
||||
int32_t error; // error is always == (x**2 + y**2 - radius**2),
|
||||
|
||||
int dx, dy; // Trace directions
|
||||
|
||||
// Setup arc interpolation --------------------------------------------------------------------------------
|
||||
|
||||
uint32_t radius_steps = round(radius*X_STEPS_PER_MM);
|
||||
if(radius_steps == 0) { return; }
|
||||
// Determine angular direction (+1 = clockwise, -1 = counterclockwise)
|
||||
angular_direction = signof(angular_travel);
|
||||
// Calculate the initial position and target position in the local coordinate system of the arc
|
||||
start_x = x = round(sin(theta)*radius_steps);
|
||||
start_y = y = round(cos(theta)*radius_steps);
|
||||
target_x = trunc(sin(theta+angular_travel)*radius_steps);
|
||||
target_y = trunc(cos(theta+angular_travel)*radius_steps);
|
||||
// Precalculate these values to optimize target detection
|
||||
target_direction_x = signof(target_x)*angular_direction;
|
||||
target_direction_y = signof(target_y)*angular_direction;
|
||||
// The "error" factor is kept up to date so that it is always == (x**2+y**2-radius**2). When error
|
||||
// <0 we are inside the arc, when it is >0 we are outside of the arc, and when it is 0 we
|
||||
// are exactly on top of the arc.
|
||||
error = x*x + y*y - radius_steps*radius_steps;
|
||||
|
||||
// Estimate length of arc in steps -------------------------------------------------------------------------
|
||||
|
||||
/*
|
||||
To support helical motion we need to know in advance how many steppings the arc will need.
|
||||
The calculations are based on the fact that we trace the circle by offsetting a square. The circle has
|
||||
four "sides" or quadrants. For each quadrant we step mainly in one axis. The amount steps for one quarter of the
|
||||
circle (e.g. along the x axis with positive y) is equal to one side of a square inscribed in the circle we
|
||||
are tracing.
|
||||
|
||||
Quadrants of the circle
|
||||
|
||||
+---- 0 ----+ 0 - y is always positive and |x| < |y|
|
||||
| | 1 - x is always positive and |x| > |y|
|
||||
| | 2 - y is always negative and |x| < |y|
|
||||
3 + 1 3 - x is always negative and |x| > |y|
|
||||
| |
|
||||
| | length of one side: 2*radius/sqrt(2)
|
||||
+---- 2 ----+
|
||||
*/
|
||||
|
||||
// Find the quadrants of the starting point and the target
|
||||
int start_quadrant = quadrant_of_the_circle(start_x, start_y);
|
||||
int target_quadrant = quadrant_of_the_circle(target_x, target_y);
|
||||
uint32_t arc_steps=0;
|
||||
// Will this whole arc take place within the same quadrant?
|
||||
if (start_quadrant == target_quadrant && (fabs(angular_travel) <= (M_PI/2))) {
|
||||
if(quadrant_horizontal(start_quadrant)) { // a horizontal quadrant where x will be the primary direction
|
||||
arc_steps = labs(target_x-start_x);
|
||||
} else { // a vertical quadrant where y will be the primary direction
|
||||
arc_steps = labs(target_y-start_y);
|
||||
}
|
||||
} else { // the start and target points are in different quadrants
|
||||
// Lets estimate the amount of steps along half a quadrant
|
||||
uint32_t steps_in_half_quadrant = ceil(radius_steps/sqrt(2));
|
||||
// Add the steps in the first partial quadrant
|
||||
arc_steps += steps_in_partial_quadrant(start_x, start_y,
|
||||
start_quadrant, angular_direction, steps_in_half_quadrant);
|
||||
// Count the number of full quadrants between the start and end quadrants
|
||||
uint8_t full_quadrants_traveled = full_quadrants_between(start_quadrant, target_quadrant, angular_direction);
|
||||
// Add steps for the full quadrants plus some stray steps for "corners"
|
||||
arc_steps += full_quadrants_traveled*(steps_in_half_quadrant*2+1);
|
||||
// Add the steps in the final partial quadrant. By inverting the angular direction we get the correct number for
|
||||
// the target quadrant which steps through the opposite part of the quadrant with respect to the start quadrant.
|
||||
arc_steps += steps_in_partial_quadrant(target_x, target_y,
|
||||
target_quadrant, -angular_direction, steps_in_half_quadrant);
|
||||
}
|
||||
|
||||
// Set up the linear interpolation of the "depth" axis -----------------------------------------------------
|
||||
|
||||
int32_t linear_steps = labs(st_millimeters_to_steps(linear_travel, axis_linear));
|
||||
int linear_direction = signof(linear_travel);
|
||||
// The number of steppings needed to trace this motion is equal to the motion that require the maximum
|
||||
// amount of steps: the arc or the line:
|
||||
int32_t maximum_steps = max(linear_steps, arc_steps);
|
||||
// Initialize the counters to do 2D linear bresenham as if the motion along the arc itself was a single axis
|
||||
// of the line, while the linear "depth" axis was the other.
|
||||
int32_t linear_counter = -maximum_steps/2;
|
||||
int32_t arc_counter = -maximum_steps/2;
|
||||
|
||||
// Calculate feed rate -------------------------------------------------------------------------------------
|
||||
|
||||
// We then calculate the millimeters of helical travel
|
||||
double millimeters_of_travel = hypot(angular_travel*radius, labs(linear_travel));
|
||||
// Then we calculate the microseconds between each step as if we will trace the full circle.
|
||||
// It doesn't matter what fraction of the circle we are actually going to trace. The pace is the same.
|
||||
compute_and_set_step_pace(feed_rate, millimeters_of_travel, maximum_steps, invert_feed_rate);
|
||||
|
||||
// Execution -----------------------------------------------------------------------------------------------
|
||||
|
||||
mode = MC_MODE_ARC;
|
||||
// Set the direction of the linear or "depth" axis, cause it will never change
|
||||
direction[axis_linear] = linear_direction;
|
||||
// Cache some stepper bit-masks to speed up the interpolation code
|
||||
uint8_t axis_1_bit = st_bit_for_stepper(axis_1);
|
||||
uint8_t axis_2_bit = st_bit_for_stepper(axis_2);
|
||||
uint8_t axis_linear_bit = st_bit_for_stepper(axis_linear);
|
||||
uint8_t diagonal_bits = (axis_1_bit | axis_2_bit);
|
||||
|
||||
uint8_t step_bits;
|
||||
|
||||
while(mode)
|
||||
{
|
||||
// This loop sets the bits in the step_bits variable for each stepper it wants to step in this cycle.
|
||||
step_bits = 0;
|
||||
// The bresenham algorithm chooses when to travel in the depth axis and when to travel along the arc
|
||||
linear_counter += linear_steps;
|
||||
if (linear_counter > 0) {
|
||||
linear_counter -= maximum_steps;
|
||||
// Move one step in the depth direction:
|
||||
step_bits |= axis_linear_bit;
|
||||
}
|
||||
arc_counter += arc_steps;
|
||||
if (arc_counter > 0) {
|
||||
arc_counter -= maximum_steps;
|
||||
// Do one step of the arc:
|
||||
// Determine directions for each axis at this point in the arc
|
||||
dx = (y!=0) ? signof(y) * angular_direction : -signof(x);
|
||||
dy = (x!=0) ? -signof(x) * angular_direction : -signof(y);
|
||||
// Take dx and dy which are local to the arc being generated and map them on to the
|
||||
// selected tool-space-axes for the current arc.
|
||||
direction[axis_1] = dx;
|
||||
direction[axis_2] = dy;
|
||||
// Check which axis will be "major" for this stepping
|
||||
if (labs(x)<labs(y)) {
|
||||
// X is major: Step arc horizontally
|
||||
error += 1 + 2*x * dx;
|
||||
x+=dx;
|
||||
diagonal_error = error + 1 + 2*y*dy;
|
||||
if(labs(error) >= labs(diagonal_error)) {
|
||||
y += dy;
|
||||
error = diagonal_error;
|
||||
step_bits |= diagonal_bits; // step diagonal
|
||||
} else {
|
||||
step_bits |= axis_1_bit; // step straight
|
||||
}
|
||||
} else {
|
||||
// Y is major: Step arc vertically
|
||||
error += 1 + 2*y * dy;
|
||||
y+=dy;
|
||||
diagonal_error = error + 1 + 2*x * dx;
|
||||
if(labs(error) >= labs(diagonal_error)) {
|
||||
x += dx;
|
||||
error = diagonal_error;
|
||||
step_bits |= diagonal_bits; // step diagonal
|
||||
} else {
|
||||
step_bits |= axis_2_bit; // step straight
|
||||
}
|
||||
}
|
||||
}
|
||||
// Tell the steppers to do the stepping
|
||||
set_stepper_directions(direction);
|
||||
step_steppers(step_bits);
|
||||
|
||||
// Check if target has been reached. Todo: Simplify/optimize/clarify
|
||||
if ((x * target_direction_y >=
|
||||
target_x * target_direction_y) &&
|
||||
(y * target_direction_x <=
|
||||
target_y * target_direction_x))
|
||||
{ if ((signof(x) == signof(target_x)) && (signof(y) == signof(target_y)))
|
||||
{ mode = MC_MODE_AT_REST; } }
|
||||
}
|
||||
// Update the tool position to the new actual position
|
||||
position[axis_1] += x-start_x;
|
||||
position[axis_2] += y-start_y;
|
||||
position[axis_2] += linear_steps*linear_direction;
|
||||
}
|
||||
|
||||
void mc_go_home()
|
||||
|
|
154
stepper.c
154
stepper.c
|
@ -32,47 +32,109 @@
|
|||
#include "wiring_serial.h"
|
||||
|
||||
#define TICKS_PER_MICROSECOND (F_CPU/1000000)
|
||||
#define STEP_BUFFER_SIZE 100
|
||||
#define LINE_BUFFER_SIZE 5
|
||||
|
||||
// A marker used to notify the stepper handler of a pace change
|
||||
#define PACE_CHANGE_MARKER 0xff
|
||||
struct Line {
|
||||
uint32_t steps_x, steps_y, steps_z;
|
||||
uint32_t maximum_steps;
|
||||
uint32_t iterations;
|
||||
uint8_t direction_bits;
|
||||
uint32_t rate;
|
||||
}
|
||||
|
||||
volatile uint8_t step_buffer[STEP_BUFFER_SIZE]; // A buffer for step instructions
|
||||
volatile int step_buffer_head = 0;
|
||||
volatile int step_buffer_tail = 0;
|
||||
volatile uint32_t current_pace;
|
||||
volatile uint32_t next_pace = 0;
|
||||
volatile uint8_t line_buffer[LINE_BUFFER_SIZE]; // A buffer for step instructions
|
||||
volatile int line_buffer_head = 0;
|
||||
volatile int line_buffer_tail = 0;
|
||||
|
||||
// Variables used by SIG_OUTPUT_COMPARE1A
|
||||
uint8_t out_bits;
|
||||
struct Line *current_line;
|
||||
uint32_t counter_x, counter_y, counter_z;
|
||||
|
||||
uint8_t stepper_mode = STEPPER_MODE_STOPPED;
|
||||
|
||||
void config_pace_timer(uint32_t microseconds);
|
||||
|
||||
void st_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_t rate) {
|
||||
// Buffer nothing unless stepping subsystem is running
|
||||
if (stepper_mode != STEPPER_MODE_RUNNING) { return; }
|
||||
// Calculate the buffer head after we push this byte
|
||||
int next_buffer_head = (line_buffer_head + 1) % LINE_BUFFER_SIZE;
|
||||
// If the buffer is full: good! That means we are well ahead of the robot.
|
||||
// Nap until there is room in the buffer.
|
||||
while(line_buffer_tail == next_buffer_head) { sleep_mode(); }
|
||||
|
||||
// setup line
|
||||
struct Line *line = &line_buffer[line_buffer_head];
|
||||
line->steps_x = labs(steps_x);
|
||||
line->steps_y = labs(steps_y);
|
||||
line->steps_z = labs(steps_y);
|
||||
line->maximum_steps = max(line->steps_x, max(line->steps_y, line->steps_z));
|
||||
line->iterations = line->maximum_steps;
|
||||
line->rate = rate;
|
||||
uint8_t direction_bits = 0;
|
||||
if (steps_x < 0) { direction_bits |= (1<<X_DIRECTION_BIT); }
|
||||
if (steps_y < 0) { direction_bits |= (1<<Y_DIRECTION_BIT); }
|
||||
if (steps_z < 0) { direction_bits |= (1<<Z_DIRECTION_BIT); }
|
||||
line->direction_bits = direction_bits;
|
||||
|
||||
// Move buffer head
|
||||
line_buffer_head = next_buffer_head;
|
||||
}
|
||||
|
||||
// This timer interrupt is executed at the pace set with st_buffer_pace. It pops one instruction from
|
||||
// the step_buffer, executes it. Then it starts timer2 in order to reset the motor port after
|
||||
// the line_buffer, executes it. Then it starts timer2 in order to reset the motor port after
|
||||
// five microseconds.
|
||||
SIGNAL(SIG_OUTPUT_COMPARE1A)
|
||||
{
|
||||
if (step_buffer_head != step_buffer_tail) {
|
||||
PORTD &= ~(1<<3);
|
||||
uint8_t popped = step_buffer[step_buffer_tail];
|
||||
if(popped == PACE_CHANGE_MARKER) {
|
||||
// This is not a step-instruction, but a pace-change-marker: change pace
|
||||
config_pace_timer(next_pace);
|
||||
next_pace = 0;
|
||||
} else {
|
||||
popped ^= STEPPING_INVERT_MASK;
|
||||
// Set the direction pins a cuple of nanoseconds before we step the steppers
|
||||
STEPPING_PORT = (STEPPING_PORT & ~DIRECTION_MASK) | (popped & DIRECTION_MASK);
|
||||
// Then pulse the stepping pins
|
||||
STEPPING_PORT = (STEPPING_PORT & ~STEP_MASK) | popped;
|
||||
// Reset step pulse reset timer
|
||||
TCNT2 = -(((STEP_PULSE_MICROSECONDS-4)*TICKS_PER_MICROSECOND)/8);
|
||||
// Set the direction pins a cuple of nanoseconds before we step the steppers
|
||||
STEPPING_PORT = (STEPPING_PORT & ~DIRECTION_MASK) | (out_bits & DIRECTION_MASK);
|
||||
// Then pulse the stepping pins
|
||||
STEPPING_PORT = (STEPPING_PORT & ~STEP_MASK) | out_bits;
|
||||
// Reset step pulse reset timer
|
||||
TCNT2 = -(((STEP_PULSE_MICROSECONDS-4)*TICKS_PER_MICROSECOND)/8);
|
||||
|
||||
// If there is no current line, attempt to pop one from the buffer
|
||||
if (current_line == NULL) {
|
||||
// Anything in the buffer?
|
||||
if (line_buffer_head != line_buffer_tail) {
|
||||
// Retrieve a new line and get ready to step it
|
||||
current_line = &line_buffer[line_buffer_tail];
|
||||
config_pace_timer(current_line->rate);
|
||||
counter_x = -current_line->maximum_steps/2;
|
||||
counter_y = counter_x;
|
||||
counter_z = counter_x;
|
||||
// move the line buffer tail to the next instruction
|
||||
line_buffer_tail = (line_buffer_tail + 1) % LINE_BUFFER_SIZE;
|
||||
}
|
||||
// move the step buffer tail to the next instruction
|
||||
step_buffer_tail = (step_buffer_tail + 1) % STEP_BUFFER_SIZE;
|
||||
} else {
|
||||
PORTD |= (1<<3);
|
||||
}
|
||||
|
||||
if (current_line != NULL) {
|
||||
out_bits = current_line->direction_bits;
|
||||
counter_x += current_line->steps_x;
|
||||
if (counter_x > 0) {
|
||||
out_bits |= (1<<X_STEP_BIT);
|
||||
counter_x -= current_line->maximum_steps;
|
||||
}
|
||||
counter_y += current_line-> steps_y;
|
||||
if (counter_y > 0) {
|
||||
out_bits |= (1<<Y_STEP_BIT);
|
||||
counter_y -= current_line->maximum_steps;
|
||||
}
|
||||
counter_z += current_line-> steps_z;
|
||||
if (counter_z > 0) {
|
||||
out_bits |= (1<<Z_STEP_BIT);
|
||||
counter_z -= current_line->maximum_steps;
|
||||
}
|
||||
// If current line is finished, reset pointer
|
||||
current_line->iterations -= 1;
|
||||
if (current_line->iterations <= 0) {
|
||||
current_line = NULL;
|
||||
}
|
||||
} else {
|
||||
out_bits = 0;
|
||||
}
|
||||
out_bits ^= STEPPING_INVERT_MASK;
|
||||
}
|
||||
|
||||
// This interrupt is set up by SIG_OUTPUT_COMPARE1A when it sets the motor port bits. It resets
|
||||
|
@ -113,25 +175,11 @@ void st_init()
|
|||
config_pace_timer(20000);
|
||||
}
|
||||
|
||||
inline void st_buffer_step(uint8_t motor_port_bits)
|
||||
{
|
||||
// Buffer nothing unless stepping subsystem is running
|
||||
if (stepper_mode != STEPPER_MODE_RUNNING) { return; }
|
||||
// Calculate the buffer head after we push this byte
|
||||
int next_buffer_head = (step_buffer_head + 1) % STEP_BUFFER_SIZE;
|
||||
// If the buffer is full: good! That means we are well ahead of the robot.
|
||||
// Nap until there is room for more steps.
|
||||
while(step_buffer_tail == next_buffer_head) { sleep_mode(); }
|
||||
// Push byte
|
||||
step_buffer[step_buffer_head] = motor_port_bits;
|
||||
step_buffer_head = next_buffer_head;
|
||||
}
|
||||
|
||||
// Block until all buffered steps are executed
|
||||
void st_synchronize()
|
||||
{
|
||||
if (stepper_mode == STEPPER_MODE_RUNNING) {
|
||||
while(step_buffer_tail != step_buffer_head) { sleep_mode(); }
|
||||
while(line_buffer_tail != line_buffer_head) { sleep_mode(); }
|
||||
} else {
|
||||
st_flush();
|
||||
}
|
||||
|
@ -141,7 +189,8 @@ void st_synchronize()
|
|||
void st_flush()
|
||||
{
|
||||
cli();
|
||||
step_buffer_tail = step_buffer_head;
|
||||
line_buffer_tail = line_buffer_head;
|
||||
current_line = NULL;
|
||||
sei();
|
||||
}
|
||||
|
||||
|
@ -169,23 +218,6 @@ inline void st_stop()
|
|||
stepper_mode = STEPPER_MODE_STOPPED;
|
||||
}
|
||||
|
||||
// Buffer a pace change. Pace is the rate with which steps are executed. It is measured in microseconds from step to step.
|
||||
// It is continually adjusted to achieve constant actual feed rate. Unless pace-changes was buffered along with the steps
|
||||
// they govern they might change at slightly wrong moments in time as the pace would change while the stepper buffer was
|
||||
// still churning out the previous movement.
|
||||
void st_buffer_pace(uint32_t microseconds)
|
||||
{
|
||||
// Do nothing if the pace in unchanged or the stepping subsytem is not running
|
||||
if ((current_pace == microseconds) || (stepper_mode != STEPPER_MODE_RUNNING)) { return; }
|
||||
// If the single-element pace "buffer" is full, sleep until it is popped
|
||||
while (next_pace != 0) {
|
||||
sleep_mode();
|
||||
}
|
||||
// Buffer the pace change
|
||||
next_pace = microseconds;
|
||||
st_buffer_step(PACE_CHANGE_MARKER); // Place a pace-change marker in the step-buffer
|
||||
}
|
||||
|
||||
// Returns a bitmask with the stepper bit for the given axis set
|
||||
uint8_t st_bit_for_stepper(int axis) {
|
||||
switch(axis) {
|
||||
|
|
10
stepper.h
10
stepper.h
|
@ -35,14 +35,8 @@ void st_init();
|
|||
// Returns a bitmask with the stepper bit for the given axis set
|
||||
uint8_t st_bit_for_stepper(int axis);
|
||||
|
||||
// Buffer a pace change. Pace is the rate with which steps are executed. It is measured in microseconds from step to step.
|
||||
// It is continually adjusted to achieve constant actual feed rate. Unless pace-changes was buffered along with the steps
|
||||
// they govern they might change at slightly wrong moments in time as the pace would change while the stepper buffer was
|
||||
// still churning out the previous movement.
|
||||
void st_buffer_pace(uint32_t microseconds);
|
||||
|
||||
// Buffer a new instruction for the steppers
|
||||
inline void st_buffer_step(uint8_t motor_port_bits);
|
||||
// Buffer a new line segment (might block until there is room in the buffer)
|
||||
void st_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_t rate);
|
||||
|
||||
// Block until all buffered steps are executed
|
||||
void st_synchronize();
|
||||
|
|
Ładowanie…
Reference in New Issue