Added runtime configurable global settings with eeprom persitence

pull/1/head
Simen Svale Skogsrud 2010-03-07 20:29:18 +01:00
rodzic a6b8d73044
commit b8ba8a4231
13 zmienionych plików z 350 dodań i 48 usunięć

Wyświetl plik

@ -30,12 +30,14 @@
DEVICE = atmega168
CLOCK = 16000000
PROGRAMMER = -c avrisp2 -P usb
OBJECTS = main.o motion_control.o gcode.o spindle_control.o wiring_serial.o serial_protocol.o stepper.o
FUSES = -U hfuse:w:0xd9:m -U lfuse:w:0x24:m
OBJECTS = main.o motion_control.o gcode.o spindle_control.o wiring_serial.o serial_protocol.o stepper.o \
eeprom.o config.o
# FUSES = -U hfuse:w:0xd9:m -U lfuse:w:0x24:m
FUSES = -U hfuse:w:0xd2:m -U lfuse:w:0xff:m
# Tune the lines below only if you know what you are doing:
AVRDUDE = avrdude $(PROGRAMMER) -p $(DEVICE) -B 10 -F
AVRDUDE = avrdude $(PROGRAMMER) -p $(DEVICE) -B 10 -F
COMPILE = avr-gcc -Wall -Os -DF_CPU=$(CLOCK) -mmcu=$(DEVICE) -I.
# symbolic targets:

95
config.c 100644
Wyświetl plik

@ -0,0 +1,95 @@
/*
config.c - eeprom and compile time configuration handling
Part of Grbl
Copyright (c) 2009 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#include <avr/io.h>
#include <math.h>
#include "nuts_bolts.h"
#include "config.h"
#include "eeprom.h"
#include "wiring_serial.h"
void reset_settings() {
settings.steps_per_mm[0] = X_STEPS_PER_MM;
settings.steps_per_mm[1] = Y_STEPS_PER_MM;
settings.steps_per_mm[2] = Z_STEPS_PER_MM;
settings.pulse_microseconds = STEP_PULSE_MICROSECONDS;
settings.default_feed_rate = DEFAULT_FEEDRATE;
settings.default_seek_rate = RAPID_FEEDRATE;
settings.mm_per_arc_segment = MM_PER_ARC_SEGMENT;
settings.invert_mask = STEPPING_INVERT_MASK;
}
void dump_settings() {
printString("$0 = "); printFloat(settings.steps_per_mm[0]);
printString(" (steps/mm x)\r\n$1 = "); printFloat(settings.steps_per_mm[1]);
printString(" (steps/mm y)\r\n$2 = "); printFloat(settings.steps_per_mm[2]);
printString(" (steps/mm z)\r\n$3 = "); printInteger(settings.pulse_microseconds);
printString(" (microseconds step pulse)\r\n$4 = "); printFloat(settings.default_feed_rate);
printString(" (mm/sec default feed rate)\r\n$5 = "); printFloat(settings.default_seek_rate);
printString(" (mm/sec default seek rate)\r\n$6 = "); printFloat(settings.mm_per_arc_segment);
printString(" (mm/arc segment)\r\n$7 = "); printInteger(settings.invert_mask);
printString(" (step port invert mask. binary = "); printIntegerInBase(settings.invert_mask, 2);
printString(")\r\n\r\n'$x=value' to set parameter or just '$' to dump current settings\r\n");
}
int read_settings() {
// Check version-byte of eeprom
uint8_t version = eeprom_get_char(0);
if (version != SETTINGS_VERSION) { return(FALSE); }
// Read settings-record and check checksum
if (!(memcpy_from_eeprom_with_checksum((char*)&settings, 1, sizeof(struct Settings)))) {
return(FALSE);
}
return(TRUE);
}
void write_settings() {
eeprom_put_char(0, SETTINGS_VERSION);
memcpy_to_eeprom_with_checksum(1, (char*)&settings, sizeof(struct Settings));
}
// A helper method to set settings from command line
void store_setting(int parameter, double value) {
switch(parameter) {
case 0: case 1: case 2:
settings.steps_per_mm[parameter] = value; break;
case 3: settings.pulse_microseconds = round(value); break;
case 4: settings.default_feed_rate = value; break;
case 5: settings.default_seek_rate = value; break;
case 6: settings.mm_per_arc_segment = value; break;
case 7: settings.invert_mask = trunc(value); break;
default:
printString("Unknown parameter\r\n");
return;
}
write_settings();
printString("Stored new setting\r\n");
}
void config_init() {
if(read_settings()) {
printString("'$' to dump current settings\r\n");
} else {
printString("EEPROM blank. Rewrote default settings:\r\n");
reset_settings();
write_settings();
dump_settings();
}
}

Wyświetl plik

@ -1,5 +1,5 @@
/*
config.h - configuration data for Grbl
config.h - eeprom and compile time configuration handling
Part of Grbl
Copyright (c) 2009 Simen Svale Skogsrud
@ -21,22 +21,11 @@
#ifndef config_h
#define config_h
#define VERSION "0.5"
#define VERSION "0.51"
#define MICROSTEPS 8
#define X_STEPS_PER_MM (94.488188976378*MICROSTEPS)
#define Y_STEPS_PER_MM (94.488188976378*MICROSTEPS)
#define Z_STEPS_PER_MM (94.488188976378*MICROSTEPS)
// Settings that can only be set at compile-time:
#define STEP_PULSE_MICROSECONDS 30
#define INCHES_PER_MM (1.0/25.4)
#define X_STEPS_PER_INCH X_STEPS_PER_MM*INCHES_PER_MM
#define Y_STEPS_PER_INCH Y_STEPS_PER_MM*INCHES_PER_MM
#define Z_STEPS_PER_INCH Z_STEPS_PER_MM*INCHES_PER_MM
#define RAPID_FEEDRATE 480.0 // in millimeters per minute
#define DEFAULT_FEEDRATE 480.0
#define BAUD_RATE 9600
#define STEPPERS_ENABLE_DDR DDRD
#define STEPPERS_ENABLE_PORT PORTD
@ -65,14 +54,44 @@
#define SPINDLE_DIRECTION_PORT PORTD
#define SPINDLE_DIRECTION_BIT 7
// Version of the EEPROM data. Will be used to migrate existing data from older versions of Grbl
// when firmware is upgraded. Always stored in byte 0 of eeprom
#define SETTINGS_VERSION 1
// Current global settings (persisted in EEPROM from byte 1 onwards)
struct Settings {
double steps_per_mm[3];
uint8_t microsteps;
uint8_t pulse_microseconds;
double default_feed_rate;
double default_seek_rate;
uint8_t invert_mask;
double mm_per_arc_segment;
};
struct Settings settings;
// Initialize the configuration subsystem (load settings from EEPROM)
void config_init();
// Print current settings
void dump_settings();
// A helper method to set new settings from command line
void store_setting(int parameter, double value);
// Default settings (used when resetting eeprom-settings)
#define MICROSTEPS 8
#define X_STEPS_PER_MM (94.488188976378*MICROSTEPS)
#define Y_STEPS_PER_MM (94.488188976378*MICROSTEPS)
#define Z_STEPS_PER_MM (94.488188976378*MICROSTEPS)
#define STEP_PULSE_MICROSECONDS 30
#define MM_PER_ARC_SEGMENT 0.1
#define BAUD_RATE 9600
#define STEP_MASK ((1<<X_STEP_BIT)|(1<<Y_STEP_BIT)|(1<<Z_STEP_BIT))
#define DIRECTION_MASK ((1<<X_DIRECTION_BIT)|(1<<Y_DIRECTION_BIT)|(1<<Z_DIRECTION_BIT))
#define STEPPING_MASK (STEP_MASK | DIRECTION_MASK)
#define LIMIT_MASK ((1<<X_LIMIT_BIT)|(1<<Y_LIMIT_BIT)|(1<<Z_LIMIT_BIT))
#define RAPID_FEEDRATE 480.0 // in millimeters per minute
#define DEFAULT_FEEDRATE 480.0
// Use this line for default operation (step-pulses high)
#define STEPPING_INVERT_MASK 0
@ -83,4 +102,13 @@
// Or bake your own like this adding any step-bits or directions you want to invert:
// #define STEPPING_INVERT_MASK (STEP_MASK | (1<<X_DIRECTION_BIT) | (1<<Y_DIRECTION_BIT))
// Some useful constants
#define STEP_MASK ((1<<X_STEP_BIT)|(1<<Y_STEP_BIT)|(1<<Z_STEP_BIT)) // All step bits
#define DIRECTION_MASK ((1<<X_DIRECTION_BIT)|(1<<Y_DIRECTION_BIT)|(1<<Z_DIRECTION_BIT)) // All direction bits
#define STEPPING_MASK (STEP_MASK | DIRECTION_MASK) // All stepping-related bits (step/direction)
#define LIMIT_MASK ((1<<X_LIMIT_BIT)|(1<<Y_LIMIT_BIT)|(1<<Z_LIMIT_BIT)) // All limit bits
#define INCHES_PER_MM (1.0/25.4) // A conversion rate
#endif

148
eeprom.c 100755
Wyświetl plik

@ -0,0 +1,148 @@
// This file has been prepared for Doxygen automatic documentation generation.
/*! \file ********************************************************************
*
* Atmel Corporation
*
* \li File: eeprom.c
* \li Compiler: IAR EWAAVR 3.10c
* \li Support mail: avr@atmel.com
*
* \li Supported devices: All devices with split EEPROM erase/write
* capabilities can be used.
* The example is written for ATmega48.
*
* \li AppNote: AVR103 - Using the EEPROM Programming Modes.
*
* \li Description: Example on how to use the split EEPROM erase/write
* capabilities in e.g. ATmega48. All EEPROM
* programming modes are tested, i.e. Erase+Write,
* Erase-only and Write-only.
*
* $Revision: 1.6 $
* $Date: Friday, February 11, 2005 07:16:44 UTC $
****************************************************************************/
#include <avr/io.h>
#include <avr/interrupt.h>
/* These EEPROM bits have different names on different devices. */
#ifndef EEPE
#define EEPE EEWE //!< EEPROM program/write enable.
#define EEMPE EEMWE //!< EEPROM master program/write enable.
#endif
/* These two are unfortunately not defined in the device include files. */
#define EEPM1 5 //!< EEPROM Programming Mode Bit 1.
#define EEPM0 4 //!< EEPROM Programming Mode Bit 0.
/* Define to reduce code size. */
#define EEPROM_IGNORE_SELFPROG //!< Remove SPM flag polling.
/*! \brief Read byte from EEPROM.
*
* This function reads one byte from a given EEPROM address.
*
* \note The CPU is halted for 4 clock cycles during EEPROM read.
*
* \param addr EEPROM address to read from.
* \return The byte read from the EEPROM address.
*/
unsigned char eeprom_get_char( unsigned int addr )
{
do {} while( EECR & (1<<EEPE) ); // Wait for completion of previous write.
EEAR = addr; // Set EEPROM address register.
EECR = (1<<EERE); // Start EEPROM read operation.
return EEDR; // Return the byte read from EEPROM.
}
/*! \brief Write byte to EEPROM.
*
* This function writes one byte to a given EEPROM address.
* The differences between the existing byte and the new value is used
* to select the most efficient EEPROM programming mode.
*
* \note The CPU is halted for 2 clock cycles during EEPROM programming.
*
* \note When this function returns, the new EEPROM value is not available
* until the EEPROM programming time has passed. The EEPE bit in EECR
* should be polled to check whether the programming is finished.
*
* \note The EEPROM_GetChar() function checks the EEPE bit automatically.
*
* \param addr EEPROM address to write to.
* \param new_value New EEPROM value.
*/
void eeprom_put_char( unsigned int addr, unsigned char new_value )
{
char old_value; // Old EEPROM value.
char diff_mask; // Difference mask, i.e. old value XOR new value.
cli(); // Ensure atomic operation for the write operation.
do {} while( EECR & (1<<EEPE) ); // Wait for completion of previous write.
#ifndef EEPROM_IGNORE_SELFPROG
do {} while( SPMCSR & (1<<SELFPRGEN) ); // Wait for completion of SPM.
#endif
EEAR = addr; // Set EEPROM address register.
EECR = (1<<EERE); // Start EEPROM read operation.
old_value = EEDR; // Get old EEPROM value.
diff_mask = old_value ^ new_value; // Get bit differences.
// Check if any bits are changed to '1' in the new value.
if( diff_mask & new_value ) {
// Now we know that _some_ bits need to be erased to '1'.
// Check if any bits in the new value are '0'.
if( new_value != 0xff ) {
// Now we know that some bits need to be programmed to '0' also.
EEDR = new_value; // Set EEPROM data register.
EECR = (1<<EEMPE) | // Set Master Write Enable bit...
(0<<EEPM1) | (0<<EEPM0); // ...and Erase+Write mode.
EECR |= (1<<EEPE); // Start Erase+Write operation.
} else {
// Now we know that all bits should be erased.
EECR = (1<<EEMPE) | // Set Master Write Enable bit...
(1<<EEPM0); // ...and Erase-only mode.
EECR |= (1<<EEPE); // Start Erase-only operation.
}
} else {
// Now we know that _no_ bits need to be erased to '1'.
// Check if any bits are changed from '1' in the old value.
if( diff_mask ) {
// Now we know that _some_ bits need to the programmed to '0'.
EEDR = new_value; // Set EEPROM data register.
EECR = (1<<EEMPE) | // Set Master Write Enable bit...
(1<<EEPM1); // ...and Write-only mode.
EECR |= (1<<EEPE); // Start Write-only operation.
}
}
sei(); // Restore interrupt flag state.
}
void memcpy_to_eeprom_with_checksum(unsigned int destination, char *source, unsigned int size) {
unsigned char checksum = 0;
for(; size > 0; size--) {
checksum = (checksum << 1) || (checksum >> 7);
checksum += *source;
eeprom_put_char(destination++, *(source++));
}
eeprom_put_char(destination, checksum);
}
int memcpy_from_eeprom_with_checksum(char *destination, unsigned int source, unsigned int size) {
unsigned char data, checksum = 0;
for(; size > 0; size--) {
data = eeprom_get_char(source++);
checksum = (checksum << 1) || (checksum >> 7);
checksum += data;
*(destination++) = data;
}
return(checksum == eeprom_get_char(source));
}
// end of file

9
eeprom.h 100644
Wyświetl plik

@ -0,0 +1,9 @@
#ifndef eeprom_h
#define eeprom_h
char eeprom_get_char(unsigned int addr);
void eeprom_put_char(unsigned int addr, char new_value);
void memcpy_to_eeprom_with_checksum(unsigned int destination, char *source, unsigned int size);
int memcpy_from_eeprom_with_checksum(char *destination, unsigned int source, unsigned int size);
#endif

18
gcode.c
Wyświetl plik

@ -83,7 +83,7 @@ struct ParserState {
uint8_t absolute_mode; /* 0 = relative motion, 1 = absolute motion {G90, G91} */
uint8_t program_flow;
int spindle_direction;
double feed_rate; /* Millimeters/second */
double feed_rate, seek_rate; /* Millimeters/second */
double position[3]; /* Where the interpreter considers the tool to be at this point in the code */
uint8_t tool;
int16_t spindle_speed; /* RPM/100 */
@ -110,7 +110,8 @@ void select_plane(uint8_t axis_0, uint8_t axis_1, uint8_t axis_2)
void gc_init() {
memset(&gc, 0, sizeof(gc));
gc.feed_rate = DEFAULT_FEEDRATE/60;
gc.feed_rate = settings.default_feed_rate/60;
gc.seek_rate = settings.default_seek_rate/60;
select_plane(X_AXIS, Y_AXIS, Z_AXIS);
gc.absolute_mode = TRUE;
}
@ -163,6 +164,16 @@ uint8_t gc_execute_line(char *line) {
if (line[0] == '(') { return(gc.status_code); }
if (line[0] == '/') { counter++; } // ignore block delete
if (line[0] == '$') { // This is a parameter line intended to change EEPROM-settings
// Parameter lines are on the form '$4=374.3' or '$' to dump current settings
counter = 1;
if(line[counter] == 0) { dump_settings(); return(GCSTATUS_OK); }
read_double(line, &counter, &p);
if(line[counter++] != '=') { return(GCSTATUS_UNSUPPORTED_STATEMENT); }
read_double(line, &counter, &value);
if(line[counter] != 0) { return(GCSTATUS_UNSUPPORTED_STATEMENT); }
store_setting(p, value);
}
// Pass 1: Commands
while(next_statement(&letter, &value, line, &counter)) {
@ -256,7 +267,8 @@ uint8_t gc_execute_line(char *line) {
case NEXT_ACTION_DEFAULT:
switch (gc.motion_mode) {
case MOTION_MODE_CANCEL: break;
case MOTION_MODE_RAPID_LINEAR: case MOTION_MODE_LINEAR:
case MOTION_MODE_RAPID_LINEAR:
case MOTION_MODE_LINEAR:
mc_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS],
(gc.inverse_feed_rate_mode) ? inverse_feed_rate : gc.feed_rate, gc.inverse_feed_rate_mode);
break;

2
main.c
Wyświetl plik

@ -33,12 +33,12 @@
int main(void)
{
beginSerial(BAUD_RATE);
config_init();
st_init(); // initialize the stepper subsystem
mc_init(); // initialize motion control subsystem
spindle_init(); // initialize spindle controller
gc_init(); // initialize gcode-parser
sp_init(); // initialize the serial protocol
// sd_raw_init());
DDRD |= (1<<3)|(1<<4)|(1<<5);

Wyświetl plik

@ -51,9 +51,9 @@ void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate
int32_t target[3]; // The target position in absolute steps
int32_t steps[3]; // The target line in relative steps
target[X_AXIS] = lround(x*X_STEPS_PER_MM);
target[Y_AXIS] = lround(y*Y_STEPS_PER_MM);
target[Z_AXIS] = lround(z*Z_STEPS_PER_MM);
target[X_AXIS] = lround(x*settings.steps_per_mm[0]);
target[Y_AXIS] = lround(y*settings.steps_per_mm[1]);
target[Z_AXIS] = lround(z*settings.steps_per_mm[2]);
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
steps[axis] = target[axis]-position[axis];
@ -64,9 +64,9 @@ void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate
} else {
// Ask old Phytagoras to estimate how many mm our next move is going to take us
double millimeters_of_travel = sqrt(
square(steps[X_AXIS]/X_STEPS_PER_MM) +
square(steps[Y_AXIS]/Y_STEPS_PER_MM) +
square(steps[Z_AXIS]/Z_STEPS_PER_MM));
square(steps[X_AXIS]/settings.steps_per_mm[0]) +
square(steps[Y_AXIS]/settings.steps_per_mm[1]) +
square(steps[Z_AXIS]/settings.steps_per_mm[2]));
st_buffer_line(steps[X_AXIS], steps[Y_AXIS], steps[Z_AXIS],
lround((millimeters_of_travel/feed_rate)*1000000));
}
@ -80,14 +80,12 @@ void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate
// The arc is approximated by generating a huge number of tiny, linear segments. The length of each
// segment is configured in config.h by setting MM_PER_ARC_SEGMENT.
// ISSUE: The arc interpolator assumes all axes have the same steps/mm as the X axis.
void mc_arc(double theta, double angular_travel, double radius, double linear_travel, int axis_1, int axis_2,
int axis_linear, double feed_rate, int invert_feed_rate)
{
double millimeters_of_travel = hypot(angular_travel*radius, labs(linear_travel));
if (millimeters_of_travel == 0.0) { return; }
uint16_t segments = ceil(millimeters_of_travel/MM_PER_ARC_SEGMENT);
uint16_t segments = ceil(millimeters_of_travel/settings.mm_per_arc_segment);
// Multiply inverse feed_rate to compensate for the fact that this movement is approximated
// by a number of discrete segments. The inverse feed_rate should be correct for the sum of
// all segments.
@ -97,8 +95,8 @@ void mc_arc(double theta, double angular_travel, double radius, double linear_tr
// The linear motion for each segment
double linear_per_segment = linear_travel/segments;
// Compute the center of this circle
double center_x = (position[axis_1]/X_STEPS_PER_MM)-sin(theta)*radius;
double center_y = (position[axis_2]/Y_STEPS_PER_MM)-cos(theta)*radius;
double center_x = (position[axis_1]/settings.steps_per_mm[axis_1])-sin(theta)*radius;
double center_y = (position[axis_2]/settings.steps_per_mm[axis_2])-cos(theta)*radius;
// a vector to track the end point of each segment
double target[3];
int i;

Wyświetl plik

@ -1,4 +1,4 @@
Grbl - An embedded rs274/ngc (g-code) integrater interpreter and motion-controller for the Arduino/AVR328 microcontroller
Grbl - An embedded rs274/ngc (g-code) interpreter and motion-controller for the Arduino/AVR328 microcontroller
Goal: A no-compromise, high performance, low cost alternative to parallel-port based motion control for CNC milling
@ -10,12 +10,12 @@ Status:
* Standards-compliant g-code arcs/circles fully supported
* Buffered, non blocking, asynchronous step generation so the rest of the system is free to process
g-code while the steppers are steppin'
* Configuration parameters stored in EEPROM and set via simple commands
* Tested on very few (two) CNC rigs
Pending:
* Battle hardening in the field
* Documentation and web-site
* Simpler configuration (w/o recompilation)
* Optional support for a alphanumeric LCD readout, a joystick and a few buttons for program control
* Support "headless" fabrication by buffering all code to SD-card or similar
* Easing of feed rate

Wyświetl plik

@ -95,8 +95,8 @@ SIGNAL(SIG_OUTPUT_COMPARE1A)
// Then pulse the stepping pins
STEPPING_PORT = (STEPPING_PORT & ~STEP_MASK) | out_bits;
// Reset step pulse reset timer so that SIG_OVERFLOW2 can reset the signal after
// exactly STEP_PULSE_MICROSECONDS microseconds.
TCNT2 = -(((STEP_PULSE_MICROSECONDS-2)*TICKS_PER_MICROSECOND)/8);
// exactly settings.pulse_microseconds microseconds.
TCNT2 = -(((settings.pulse_microseconds-2)*TICKS_PER_MICROSECOND)/8);
busy = TRUE;
sei(); // Re enable interrupts (normally disabled while inside an interrupt handler)
@ -150,17 +150,17 @@ SIGNAL(SIG_OUTPUT_COMPARE1A)
} else {
out_bits = 0;
}
out_bits ^= STEPPING_INVERT_MASK;
out_bits ^= settings.invert_mask;
busy=FALSE;
PORTD &= ~(1<<3);
}
// This interrupt is set up by SIG_OUTPUT_COMPARE1A when it sets the motor port bits. It resets
// the motor port after a short period (STEP_PULSE_MICROSECONDS) completing one step cycle.
// the motor port after a short period (settings.pulse_microseconds) completing one step cycle.
SIGNAL(SIG_OVERFLOW2)
{
// reset stepping pins (leave the direction pins)
STEPPING_PORT = (STEPPING_PORT & ~STEP_MASK) | (STEPPING_INVERT_MASK & STEP_MASK);
STEPPING_PORT = (STEPPING_PORT & ~STEP_MASK) | (settings.invert_mask & STEP_MASK);
}
// Initialize and start the stepper motor subsystem
@ -168,7 +168,7 @@ void st_init()
{
// Configure directions of interface pins
STEPPING_DDR |= STEPPING_MASK;
STEPPING_PORT = (STEPPING_PORT & ~STEPPING_MASK); //| STEPPING_INVERT_MASK;
STEPPING_PORT = (STEPPING_PORT & ~STEPPING_MASK) | settings.invert_mask;
LIMIT_DDR &= ~(LIMIT_MASK);
STEPPERS_ENABLE_DDR |= 1<<STEPPERS_ENABLE_BIT;

Wyświetl plik

@ -1,4 +1,4 @@
* Use errno to detect fp-errors
* Complete support for using and setting separate seek-rate for G0-commnads
* Implement homing cycle in stepper.c
* Implement limit switch support in stepper.c (use port-triggered interrupts?)
* Tool change M6

Wyświetl plik

@ -180,6 +180,15 @@ void printInteger(long n)
printIntegerInBase(n, 10);
}
void printFloat(double n)
{
double integer_part, fractional_part;
fractional_part = modf(n, &integer_part);
printInteger(integer_part);
printByte('.');
printInteger(round(fractional_part*1000));
}
// void printHex(unsigned long n)
// {
// printIntegerInBase(n, 16);

Wyświetl plik

@ -39,5 +39,6 @@ void printHex(unsigned long n);
void printOctal(unsigned long n);
void printBinary(unsigned long n);
void printIntegerInBase(unsigned long n, unsigned long base);
void printFloat(double n);
#endif