kopia lustrzana https://github.com/espressif/esp-idf
609 wiersze
19 KiB
C
609 wiersze
19 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include "sdkconfig.h"
|
|
#include <sys/param.h>
|
|
#include <string.h>
|
|
#include "esp_log.h"
|
|
#include "test_utils.h"
|
|
#include "esp_adc_cal.h"
|
|
#include "driver/adc_common.h"
|
|
#include "esp_cpu.h"
|
|
|
|
__attribute__((unused)) static const char *TAG = "ADC";
|
|
|
|
#if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32, ESP32S2, ESP32S3, ESP32C3, ESP32C2)
|
|
//TODO: IDF-3160
|
|
|
|
#define TEST_COUNT 4096
|
|
#define MAX_ARRAY_SIZE 4096
|
|
#define TEST_ATTEN ADC_ATTEN_MAX //Set to ADC_ATTEN_*db to test a single attenuation only
|
|
|
|
static int s_adc_count[MAX_ARRAY_SIZE]={};
|
|
static int s_adc_offset = -1;
|
|
|
|
static int insert_point(uint32_t value)
|
|
{
|
|
const bool fixed_size = true;
|
|
|
|
if (s_adc_offset < 0) {
|
|
if (fixed_size) {
|
|
TEST_ASSERT_GREATER_OR_EQUAL(4096, MAX_ARRAY_SIZE);
|
|
s_adc_offset = 0; //Fixed to 0 because the array can hold all the data in 12 bits
|
|
} else {
|
|
s_adc_offset = MAX((int)value - MAX_ARRAY_SIZE/2, 0);
|
|
}
|
|
}
|
|
|
|
if (!fixed_size && (value < s_adc_offset || value >= s_adc_offset + MAX_ARRAY_SIZE)) {
|
|
TEST_ASSERT_GREATER_OR_EQUAL(s_adc_offset, value);
|
|
TEST_ASSERT_LESS_THAN(s_adc_offset + MAX_ARRAY_SIZE, value);
|
|
}
|
|
|
|
s_adc_count[value - s_adc_offset] ++;
|
|
return value - s_adc_offset;
|
|
}
|
|
|
|
static void reset_array(void)
|
|
{
|
|
memset(s_adc_count, 0, sizeof(s_adc_count));
|
|
s_adc_offset = -1;
|
|
}
|
|
|
|
static uint32_t get_average(void)
|
|
{
|
|
uint32_t sum = 0;
|
|
int count = 0;
|
|
for (int i = 0; i < MAX_ARRAY_SIZE; i++) {
|
|
sum += s_adc_count[i] * (s_adc_offset+i);
|
|
count += s_adc_count[i];
|
|
}
|
|
return sum/count;
|
|
}
|
|
|
|
static void print_summary(bool figure)
|
|
{
|
|
const int MAX_WIDTH=20;
|
|
int max_count = 0;
|
|
int start = -1;
|
|
int end = -1;
|
|
uint32_t sum = 0;
|
|
int count = 0;
|
|
for (int i = 0; i < MAX_ARRAY_SIZE; i++) {
|
|
if (s_adc_count[i] > max_count) {
|
|
max_count = s_adc_count[i];
|
|
}
|
|
if (s_adc_count[i] > 0 && start < 0) {
|
|
start = i;
|
|
}
|
|
if (s_adc_count[i] > 0) {
|
|
end = i;
|
|
}
|
|
count += s_adc_count[i];
|
|
sum += s_adc_count[i] * (s_adc_offset+i);
|
|
}
|
|
|
|
if (figure) {
|
|
for (int i = start; i <= end; i++) {
|
|
printf("%4d ", i+s_adc_offset);
|
|
int count = s_adc_count[i] * MAX_WIDTH / max_count;
|
|
for (int j = 0; j < count; j++) {
|
|
putchar('|');
|
|
}
|
|
printf(" %d\n", s_adc_count[i]);
|
|
}
|
|
}
|
|
float average = (float)sum/count;
|
|
|
|
float variation_square = 0;
|
|
for (int i = start; i <= end; i ++) {
|
|
if (s_adc_count[i] == 0) {
|
|
continue;
|
|
}
|
|
float delta = i + s_adc_offset - average;
|
|
variation_square += (delta * delta) * s_adc_count[i];
|
|
}
|
|
|
|
printf("%d points.\n", count);
|
|
printf("average: %.1f\n", (float)sum/count);
|
|
printf("std: %.2f\n", sqrt(variation_square/count));
|
|
}
|
|
|
|
static void continuous_adc_init(uint16_t adc1_chan_mask, uint16_t adc2_chan_mask, adc_channel_t *channel, uint8_t channel_num, adc_atten_t atten)
|
|
{
|
|
adc_digi_init_config_t adc_dma_config = {
|
|
.max_store_buf_size = TEST_COUNT*2,
|
|
.conv_num_each_intr = 128,
|
|
.adc1_chan_mask = adc1_chan_mask,
|
|
.adc2_chan_mask = adc2_chan_mask,
|
|
};
|
|
TEST_ESP_OK(adc_digi_initialize(&adc_dma_config));
|
|
|
|
adc_digi_pattern_table_t adc_pattern[10] = {0};
|
|
adc_digi_config_t dig_cfg = {
|
|
.conv_limit_en = 0,
|
|
.conv_limit_num = 250,
|
|
.sample_freq_hz = 83333,
|
|
};
|
|
|
|
dig_cfg.adc_pattern_len = channel_num;
|
|
for (int i = 0; i < channel_num; i++) {
|
|
uint8_t unit = ((channel[i] >> 3) & 0x1);
|
|
uint8_t ch = channel[i] & 0x7;
|
|
adc_pattern[i].atten = atten;
|
|
adc_pattern[i].channel = ch;
|
|
adc_pattern[i].unit = unit;
|
|
}
|
|
dig_cfg.adc_pattern = adc_pattern;
|
|
TEST_ESP_OK(adc_digi_controller_config(&dig_cfg));
|
|
}
|
|
|
|
TEST_CASE("test_adc_dma", "[adc][ignore][manual]")
|
|
{
|
|
uint16_t adc1_chan_mask = BIT(2);
|
|
uint16_t adc2_chan_mask = 0;
|
|
adc_channel_t channel[1] = {ADC1_CHANNEL_2};
|
|
adc_atten_t target_atten = TEST_ATTEN;
|
|
|
|
const int output_data_size = sizeof(adc_digi_output_data_t);
|
|
|
|
int buffer_size = TEST_COUNT*output_data_size;
|
|
uint8_t* read_buf = malloc(buffer_size);
|
|
TEST_ASSERT_NOT_NULL(read_buf);
|
|
|
|
adc_atten_t atten;
|
|
bool print_figure;
|
|
if (target_atten == ADC_ATTEN_MAX) {
|
|
atten = ADC_ATTEN_DB_0;
|
|
target_atten = ADC_ATTEN_DB_11;
|
|
print_figure = false;
|
|
} else {
|
|
atten = target_atten;
|
|
print_figure = true;
|
|
}
|
|
|
|
while (1) {
|
|
ESP_LOGI("TEST_ADC", "Test with atten: %d", atten);
|
|
memset(read_buf, 0xce, buffer_size);
|
|
|
|
bool do_calibration = false;
|
|
|
|
esp_adc_cal_characteristics_t chan1_char = {};
|
|
esp_adc_cal_value_t cal_ret = esp_adc_cal_characterize(ADC_UNIT_1, atten, ADC_WIDTH_12Bit, 0, &chan1_char);
|
|
if (cal_ret == ESP_ADC_CAL_VAL_EFUSE_TP) {
|
|
do_calibration = true;
|
|
}
|
|
|
|
continuous_adc_init(adc1_chan_mask, adc2_chan_mask, channel, sizeof(channel) / sizeof(adc_channel_t), atten);
|
|
adc_digi_start();
|
|
|
|
int remain_count = TEST_COUNT;
|
|
while (remain_count) {
|
|
int already_got = TEST_COUNT - remain_count;
|
|
uint32_t ret_num;
|
|
TEST_ESP_OK(adc_digi_read_bytes(read_buf + already_got*output_data_size,
|
|
remain_count*output_data_size, &ret_num, ADC_MAX_DELAY));
|
|
|
|
TEST_ASSERT((ret_num % output_data_size) == 0);
|
|
remain_count -= ret_num / output_data_size;
|
|
}
|
|
|
|
adc_digi_output_data_t *p = (void*)read_buf;
|
|
reset_array();
|
|
for (int i = 0; i < TEST_COUNT; i++) {
|
|
insert_point(p[i].type2.data);
|
|
}
|
|
|
|
print_summary(print_figure);
|
|
|
|
if (do_calibration) {
|
|
uint32_t raw = get_average();
|
|
uint32_t voltage_mv = esp_adc_cal_raw_to_voltage(raw, &chan1_char);
|
|
printf("Voltage = %d mV\n", voltage_mv);
|
|
}
|
|
|
|
adc_digi_stop();
|
|
TEST_ESP_OK(adc_digi_deinitialize());
|
|
|
|
if (atten == target_atten) {
|
|
break;
|
|
}
|
|
|
|
atten++;
|
|
}
|
|
|
|
free(read_buf);
|
|
}
|
|
|
|
TEST_CASE("test_adc_single", "[adc][ignore][manual]")
|
|
{
|
|
adc_atten_t target_atten = TEST_ATTEN;
|
|
adc_atten_t atten;
|
|
bool print_figure;
|
|
if (target_atten == ADC_ATTEN_MAX) {
|
|
atten = ADC_ATTEN_DB_0;
|
|
target_atten = ADC_ATTEN_DB_11;
|
|
print_figure = false;
|
|
} else {
|
|
atten = target_atten;
|
|
print_figure = true;
|
|
}
|
|
|
|
adc1_config_width(ADC_WIDTH_BIT_12);
|
|
|
|
|
|
while (1) {
|
|
ESP_LOGI("TEST_ADC", "Test with atten: %d", atten);
|
|
|
|
adc1_config_channel_atten(ADC1_CHANNEL_2, atten);
|
|
|
|
bool do_calibration = false;
|
|
|
|
esp_adc_cal_characteristics_t chan1_char = {};
|
|
esp_adc_cal_value_t cal_ret = esp_adc_cal_characterize(ADC_UNIT_1, atten, ADC_WIDTH_12Bit, 0, &chan1_char);
|
|
if (cal_ret == ESP_ADC_CAL_VAL_EFUSE_TP) {
|
|
do_calibration = true;
|
|
}
|
|
|
|
|
|
const int test_count = TEST_COUNT;
|
|
adc1_channel_t channel = ADC1_CHANNEL_2;
|
|
while (1) {
|
|
|
|
reset_array();
|
|
|
|
for (int i = 0; i < test_count; i++) {
|
|
uint32_t raw = adc1_get_raw(channel);
|
|
insert_point(raw);
|
|
}
|
|
print_summary(print_figure);
|
|
break;
|
|
}
|
|
|
|
if (do_calibration) {
|
|
uint32_t raw = get_average();
|
|
uint32_t voltage_mv = esp_adc_cal_raw_to_voltage(raw, &chan1_char);
|
|
printf("Voltage = %d mV\n", voltage_mv);
|
|
}
|
|
|
|
|
|
if (atten == target_atten) {
|
|
break;
|
|
}
|
|
atten++;
|
|
}
|
|
}
|
|
|
|
#endif //#if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32, ESP32S2, ESP32S3, ESP32C3, ESP32C2)
|
|
|
|
|
|
#if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32C2) //TODO IDF-3908
|
|
|
|
/********************************************************************************
|
|
* ADC Speed Related Tests
|
|
********************************************************************************/
|
|
|
|
#define RECORD_TIME_PREPARE() uint32_t __t1, __t2
|
|
#define RECORD_TIME_START() do {__t1 = esp_cpu_get_ccount();}while(0)
|
|
#define RECORD_TIME_END(p_time) do{__t2 = esp_cpu_get_ccount(); *p_time = (__t2-__t1);}while(0)
|
|
#define GET_US_BY_CCOUNT(t) ((double)t/CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ)
|
|
|
|
|
|
//ADC Channels
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
#define ADC1_CALI_TEST_CHAN0 ADC1_CHANNEL_6
|
|
#define ADC2_CALI_TEST_CHAN0 ADC2_CHANNEL_0
|
|
#else
|
|
#define ADC1_CALI_TEST_CHAN0 ADC1_CHANNEL_2
|
|
#define ADC2_CALI_TEST_CHAN0 ADC2_CHANNEL_0
|
|
#endif
|
|
|
|
//ADC Calibration
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
#define ADC_TEST_CALI_SCHEME ESP_ADC_CAL_VAL_EFUSE_VREF
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
#define ADC_TEST_CALI_SCHEME ESP_ADC_CAL_VAL_EFUSE_TP
|
|
#elif CONFIG_IDF_TARGET_ESP32C3
|
|
#define ADC_TEST_CALI_SCHEME ESP_ADC_CAL_VAL_EFUSE_TP
|
|
#elif CONFIG_IDF_TARGET_ESP32S3
|
|
#define ADC_TEST_CALI_SCHEME ESP_ADC_CAL_VAL_EFUSE_TP_FIT
|
|
#endif
|
|
|
|
#define TIMES_PER_ATTEN 10
|
|
|
|
static esp_adc_cal_characteristics_t adc1_chars;
|
|
static esp_adc_cal_characteristics_t adc2_chars;
|
|
|
|
static void adc_single_cali_init(adc_unit_t adc_n, adc_channel_t chan, uint32_t atten)
|
|
{
|
|
esp_err_t ret;
|
|
esp_adc_cal_value_t ret_val = ESP_ADC_CAL_VAL_NOT_SUPPORTED;
|
|
|
|
ret = esp_adc_cal_check_efuse(ADC_TEST_CALI_SCHEME);
|
|
if (ret == ESP_ERR_NOT_SUPPORTED) {
|
|
ESP_LOGE(TAG, "Cali scheme not supported!");
|
|
TEST_ASSERT(ret != ESP_ERR_NOT_SUPPORTED);
|
|
} else if (ret != ESP_OK) {
|
|
ESP_LOGW(TAG, "No cali eFuse, but will run the test");
|
|
}
|
|
|
|
if (adc_n == ADC_UNIT_1) {
|
|
ret_val = esp_adc_cal_characterize(adc_n, atten, ADC_WIDTH_BIT_DEFAULT, 0, &adc1_chars);
|
|
TEST_ESP_OK(adc1_config_width(ADC_WIDTH_BIT_DEFAULT));
|
|
TEST_ESP_OK(adc1_config_channel_atten((adc1_channel_t)chan, atten));
|
|
} else if (adc_n == ADC_UNIT_2) {
|
|
TEST_ESP_OK(adc2_config_channel_atten((adc2_channel_t)chan, atten));
|
|
ret_val = esp_adc_cal_characterize(adc_n, atten, ADC_WIDTH_BIT_DEFAULT, 0, &adc2_chars);
|
|
}
|
|
if (ret_val == ESP_ADC_CAL_VAL_NOT_SUPPORTED) {
|
|
ESP_LOGW(TAG, "No cali eFuse, or invalid arg, but will run the test");
|
|
}
|
|
ESP_LOGI(TAG, "ADC%d, channel%d, atten%d", adc_n, chan, atten);
|
|
}
|
|
|
|
static IRAM_ATTR NOINLINE_ATTR uint32_t get_cali_time_in_ccount(uint32_t adc_raw, esp_adc_cal_characteristics_t *chars)
|
|
{
|
|
uint32_t time;
|
|
|
|
RECORD_TIME_PREPARE();
|
|
RECORD_TIME_START();
|
|
esp_adc_cal_raw_to_voltage(adc_raw, chars);
|
|
RECORD_TIME_END(&time);
|
|
|
|
return time;
|
|
}
|
|
|
|
TEST_CASE("test_adc_single_cali_time", "[adc][ignore][manual]")
|
|
{
|
|
ESP_LOGI(TAG, "CPU FREQ is %dMHz", CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ);
|
|
uint32_t adc1_time_record[4][TIMES_PER_ATTEN] = {};
|
|
uint32_t adc2_time_record[4][TIMES_PER_ATTEN] = {};
|
|
int adc1_raw = 0;
|
|
int adc2_raw = 0;
|
|
|
|
//atten0 ~ atten3
|
|
for (int i = 0; i < 4; i++) {
|
|
ESP_LOGI(TAG, "----------------atten%d----------------", i);
|
|
adc_single_cali_init(ADC_UNIT_1, ADC1_CALI_TEST_CHAN0, i);
|
|
adc_single_cali_init(ADC_UNIT_2, ADC2_CALI_TEST_CHAN0, i);
|
|
|
|
for (int j = 0; j < TIMES_PER_ATTEN; j++) {
|
|
|
|
adc1_raw = adc1_get_raw(ADC1_CALI_TEST_CHAN0);
|
|
TEST_ESP_OK(adc2_get_raw(ADC2_CALI_TEST_CHAN0, ADC_WIDTH_BIT_DEFAULT, &adc2_raw));
|
|
|
|
adc1_time_record[i][j] = get_cali_time_in_ccount(adc1_raw, &adc1_chars);
|
|
adc2_time_record[i][j] = get_cali_time_in_ccount(adc2_raw, &adc2_chars);
|
|
|
|
IDF_LOG_PERFORMANCE("ADC1 Cali time", "%d us", (int)GET_US_BY_CCOUNT(adc1_time_record[i][j]));
|
|
IDF_LOG_PERFORMANCE("ADC2 Cali time", "%d us", (int)GET_US_BY_CCOUNT(adc2_time_record[i][j]));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/********************************************************************************
|
|
* ADC Single with Light Sleep
|
|
********************************************************************************/
|
|
#include <inttypes.h>
|
|
#include "esp_sleep.h"
|
|
#include "esp_private/regi2c_ctrl.h"
|
|
#if REGI2C_ANA_CALI_PD_WORKAROUND
|
|
#include "regi2c_saradc.h"
|
|
#endif
|
|
|
|
//ADC Channels
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
#define ADC1_SLEEP_TEST_CHAN ADC1_CHANNEL_6
|
|
#define ADC2_SLEEP_TEST_CHAN ADC2_CHANNEL_0
|
|
static const char *TAG_CH[2][10] = {{"ADC1_CH6"}, {"ADC2_CH0"}};
|
|
#else
|
|
#define ADC1_SLEEP_TEST_CHAN ADC1_CHANNEL_2
|
|
#define ADC2_SLEEP_TEST_CHAN ADC2_CHANNEL_0
|
|
static const char *TAG_CH[2][10] = {{"ADC1_CH2"}, {"ADC2_CH0"}};
|
|
#endif
|
|
|
|
//ADC Attenuation
|
|
#define ADC_SLEEP_TEST_ATTEN ADC_ATTEN_DB_6
|
|
|
|
//ADC Calibration
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
#define ADC_SLEEP_TEST_CALI_SCHEME ESP_ADC_CAL_VAL_EFUSE_VREF
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
#define ADC_SLEEP_TEST_CALI_SCHEME ESP_ADC_CAL_VAL_EFUSE_TP
|
|
#elif CONFIG_IDF_TARGET_ESP32C3
|
|
#define ADC_SLEEP_TEST_CALI_SCHEME ESP_ADC_CAL_VAL_EFUSE_TP
|
|
#elif CONFIG_IDF_TARGET_ESP32S3
|
|
#define ADC_SLEEP_TEST_CALI_SCHEME ESP_ADC_CAL_VAL_EFUSE_TP_FIT
|
|
#endif
|
|
|
|
static esp_adc_cal_characteristics_t adc1_chars;
|
|
static esp_adc_cal_characteristics_t adc2_chars;
|
|
|
|
|
|
static bool adc_calibration_init(void)
|
|
{
|
|
esp_err_t ret;
|
|
bool cali_enable = false;
|
|
|
|
ret = esp_adc_cal_check_efuse(ADC_SLEEP_TEST_CALI_SCHEME);
|
|
if (ret == ESP_ERR_NOT_SUPPORTED) {
|
|
ESP_LOGW(TAG, "Calibration scheme not supported, skip software calibration");
|
|
} else if (ret == ESP_ERR_INVALID_VERSION) {
|
|
ESP_LOGW(TAG, "eFuse not burnt, skip software calibration");
|
|
} else if (ret == ESP_OK) {
|
|
cali_enable = true;
|
|
esp_adc_cal_characterize(ADC_UNIT_1, ADC_SLEEP_TEST_ATTEN, ADC_WIDTH_BIT_DEFAULT, 0, &adc1_chars);
|
|
esp_adc_cal_characterize(ADC_UNIT_2, ADC_SLEEP_TEST_ATTEN, ADC_WIDTH_BIT_DEFAULT, 0, &adc2_chars);
|
|
} else {
|
|
ESP_LOGE(TAG, "Invalid arg");
|
|
}
|
|
|
|
return cali_enable;
|
|
}
|
|
|
|
#define TEST_REGI2C_ANA_CALI_BYTE_NUM 8
|
|
|
|
TEST_CASE("test ADC1 Single Read with Light Sleep", "[adc][manul][ignore]")
|
|
{
|
|
//ADC1 config
|
|
TEST_ESP_OK(adc1_config_width(ADC_WIDTH_BIT_DEFAULT));
|
|
TEST_ESP_OK(adc1_config_channel_atten(ADC1_SLEEP_TEST_CHAN, ADC_SLEEP_TEST_ATTEN));
|
|
|
|
//ADC config calibration
|
|
bool cali_en = adc_calibration_init();
|
|
|
|
int raw_expected = 0;
|
|
uint32_t cali_expected = 0;
|
|
uint8_t regi2c_cali_val_before[TEST_REGI2C_ANA_CALI_BYTE_NUM] = {};
|
|
|
|
int raw_after_sleep = 0;
|
|
uint32_t cali_after_sleep = 0;
|
|
uint8_t regi2c_cali_val_after[TEST_REGI2C_ANA_CALI_BYTE_NUM] = {};
|
|
|
|
//---------------------------------Before Sleep-----------------------------------//
|
|
ESP_LOGI("Before", "Light Sleep");
|
|
|
|
//Read
|
|
raw_expected = adc1_get_raw(ADC1_SLEEP_TEST_CHAN);
|
|
if (cali_en) {
|
|
cali_expected = esp_adc_cal_raw_to_voltage(raw_expected, &adc1_chars);
|
|
}
|
|
|
|
#if REGI2C_ANA_CALI_PD_WORKAROUND
|
|
//Print regi2c
|
|
for (int i = 0; i < TEST_REGI2C_ANA_CALI_BYTE_NUM; i++) {
|
|
regi2c_cali_val_before[i] = regi2c_ctrl_read_reg(I2C_SAR_ADC, I2C_SAR_ADC_HOSTID, i);
|
|
printf("regi2c cali val is 0x%x", regi2c_cali_val_before[i]);
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
|
|
//Print result
|
|
ESP_LOGI(TAG_CH[0][0], "ADC1 raw data: %d", raw_expected);
|
|
if (cali_en) {
|
|
ESP_LOGI(TAG_CH[0][0], "ADC1 cali data: %d", cali_expected);
|
|
}
|
|
|
|
//---------------------------------After Sleep-----------------------------------//
|
|
ESP_LOGI("After", "Light Sleep");
|
|
esp_sleep_enable_timer_wakeup(30 * 1000);
|
|
esp_light_sleep_start();
|
|
ESP_LOGI(TAG, "Wakeup from light sleep.");
|
|
|
|
#if REGI2C_ANA_CALI_PD_WORKAROUND
|
|
//Print regi2c
|
|
for (int i = 0; i < TEST_REGI2C_ANA_CALI_BYTE_NUM; i++) {
|
|
regi2c_cali_val_after[i] = regi2c_ctrl_read_reg(I2C_SAR_ADC, I2C_SAR_ADC_HOSTID, i);
|
|
printf("regi2c cali val is 0x%x", regi2c_cali_val_after[i]);
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
|
|
//Read
|
|
raw_after_sleep = adc1_get_raw(ADC1_SLEEP_TEST_CHAN);
|
|
if (cali_en) {
|
|
cali_after_sleep = esp_adc_cal_raw_to_voltage(raw_after_sleep, &adc1_chars);
|
|
}
|
|
|
|
//Print result
|
|
ESP_LOGI(TAG_CH[0][0], "after light sleep, ADC1 cali data: %d", raw_after_sleep);
|
|
if (cali_en) {
|
|
ESP_LOGI(TAG_CH[0][0], "after light sleep, ADC1 cali data: %d", cali_after_sleep);
|
|
}
|
|
|
|
//Compare
|
|
int32_t raw_diff = raw_expected - raw_after_sleep;
|
|
IDF_LOG_PERFORMANCE("ADC1 raw diff after sleep", "%d", raw_diff);
|
|
if (cali_en) {
|
|
int32_t cali_diff = cali_expected - cali_after_sleep;
|
|
IDF_LOG_PERFORMANCE("ADC1 cali diff after sleep", "%d mV", cali_diff);
|
|
}
|
|
|
|
for (int i = 0; i < TEST_REGI2C_ANA_CALI_BYTE_NUM; i++) {
|
|
TEST_ASSERT_EQUAL(regi2c_cali_val_before[i], regi2c_cali_val_after[i]);
|
|
}
|
|
}
|
|
|
|
TEST_CASE("test ADC2 Single Read with Light Sleep", "[adc][manul][ignore]")
|
|
{
|
|
//ADC2 config
|
|
ESP_ERROR_CHECK(adc2_config_channel_atten(ADC2_SLEEP_TEST_CHAN, ADC_SLEEP_TEST_ATTEN));
|
|
//ADC config calibration
|
|
bool cali_en = adc_calibration_init();
|
|
|
|
int raw_expected = 0;
|
|
uint32_t cali_expected = 0;
|
|
uint8_t regi2c_cali_val_before[TEST_REGI2C_ANA_CALI_BYTE_NUM] = {};
|
|
|
|
int raw_after_sleep = 0;
|
|
uint32_t cali_after_sleep = 0;
|
|
uint8_t regi2c_cali_val_after[TEST_REGI2C_ANA_CALI_BYTE_NUM] = {};
|
|
|
|
//---------------------------------Before Sleep-----------------------------------//
|
|
ESP_LOGI("Before", "Light Sleep");
|
|
|
|
//Read
|
|
TEST_ESP_OK(adc2_get_raw(ADC2_SLEEP_TEST_CHAN, ADC_WIDTH_BIT_DEFAULT, &raw_expected));
|
|
if (cali_en) {
|
|
cali_expected = esp_adc_cal_raw_to_voltage(raw_expected, &adc2_chars);
|
|
}
|
|
|
|
#if REGI2C_ANA_CALI_PD_WORKAROUND
|
|
//Print regi2c
|
|
for (int i = 0; i < TEST_REGI2C_ANA_CALI_BYTE_NUM; i++) {
|
|
regi2c_cali_val_before[i] = regi2c_ctrl_read_reg(I2C_SAR_ADC, I2C_SAR_ADC_HOSTID, i);
|
|
printf("regi2c cali val is 0x%x", regi2c_cali_val_before[i]);
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
|
|
//Print result
|
|
ESP_LOGI(TAG_CH[1][0], "ADC2 raw data: %d", raw_expected);
|
|
if (cali_en) {
|
|
ESP_LOGI(TAG_CH[1][0], "ADC2 cali data: %d", cali_expected);
|
|
}
|
|
|
|
//---------------------------------After Sleep-----------------------------------//
|
|
ESP_LOGI("After", "Light Sleep");
|
|
esp_sleep_enable_timer_wakeup(30 * 1000);
|
|
esp_light_sleep_start();
|
|
ESP_LOGI(TAG, "Wakeup from light sleep.");
|
|
|
|
#if REGI2C_ANA_CALI_PD_WORKAROUND
|
|
//Print regi2c
|
|
for (int i = 0; i < TEST_REGI2C_ANA_CALI_BYTE_NUM; i++) {
|
|
regi2c_cali_val_after[i] = regi2c_ctrl_read_reg(I2C_SAR_ADC, I2C_SAR_ADC_HOSTID, i);
|
|
printf("regi2c cali val is 0x%x", regi2c_cali_val_after[i]);
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
|
|
//Read
|
|
TEST_ESP_OK(adc2_get_raw(ADC2_SLEEP_TEST_CHAN, ADC_WIDTH_BIT_DEFAULT, &raw_after_sleep));
|
|
if (cali_en) {
|
|
cali_after_sleep += esp_adc_cal_raw_to_voltage(raw_after_sleep, &adc2_chars);
|
|
}
|
|
|
|
//Print result
|
|
ESP_LOGI(TAG_CH[1][0], "after light sleep, ADC2 cali data: %d", raw_after_sleep);
|
|
if (cali_en) {
|
|
ESP_LOGI(TAG_CH[1][0], "after light sleep, ADC2 cali data: %d", cali_after_sleep);
|
|
}
|
|
|
|
//Compare
|
|
int32_t raw_diff = raw_expected - raw_after_sleep;
|
|
IDF_LOG_PERFORMANCE("ADC2 raw diff after sleep", "%d", raw_diff);
|
|
if (cali_en) {
|
|
int32_t cali_diff = cali_expected - cali_after_sleep;
|
|
IDF_LOG_PERFORMANCE("ADC2 cali diff after sleep", "%d mV", cali_diff);
|
|
}
|
|
for (int i = 0; i < TEST_REGI2C_ANA_CALI_BYTE_NUM; i++) {
|
|
TEST_ASSERT_EQUAL(regi2c_cali_val_before[i], regi2c_cali_val_after[i]);
|
|
}
|
|
}
|
|
#endif //#if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32C2) //TODO IDF-3908
|