esp-idf/docs/zh_CN/api-guides/memory-types.rst

218 wiersze
11 KiB
ReStructuredText
Czysty Zwykły widok Historia

.. _memory-layout:
存储器类型
------------------
{IDF_TARGET_NAME} 芯片具有不同类型的存储器和灵活的存储器映射特性,本小节将介绍 ESP-IDF 默认如何使用这些功能。
ESP-IDF 区分了指令总线IRAM、IROM、RTC FAST memory和数据总线 (DRAM、DROM)。指令存储器是可执行的,只能通过 4 字节对齐字读取或写入。数据存储器不可执行,可以通过单独的字节操作访问。有关总线的更多信息,请参阅 *{IDF_TARGET_NAME} 技术参考手册* > *系统和存储器* [`PDF <{IDF_TARGET_TRM_CN_URL}#sysmem>`__]。
.. _dram:
DRAM数据 RAM
^^^^^^^^^^^^^^^^^^^^^^^^
非常量静态数据(.data 段)和零初始化数据(.bss 段)由链接器放入内部 SRAM 作为数据存储。此区域中的剩余空间可在程序运行时用作堆。
.. only:: esp32 or esp32s2
通过应用 ``EXT_RAM_ATTR`` 宏,零初始化数据也可以放入外部 RAM。使用这个宏需要启用 :ref:`CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY`。详情请见 :ref:`external_ram_config_bss`
.. only:: esp32
如果使用蓝牙堆栈,内部 DRAM 区域的可用大小将减少 64 KB由于起始地址移动到 ``0x3FFC0000``)。如果使用内存跟踪功能,该区域的长度还会减少 16 KB 或 32 KB。由于 ROM 引起的一些内存碎片问题,不可能将所有可用的 DRAM 用于静态分配,但是剩余的 DRAM 在运行时仍可用作堆。
.. only:: not esp32
.. note::
静态分配的 DRAM 的最大值也会因编译应用程序的 :ref:`iram` 大小而减小。运行时可用的堆内存会因应用程序的总静态 IRAM 和 DRAM 使用而减少。
常量数据也可能被放入 DRAM例如当它被用于 non-flash-safe ISR 时(具体请参考 :ref:`how-to-place-code-in-iram`)。
"noinit" DRAM
=============
可以将 ``__NOINIT_ATTR`` 宏用作属性,从而将数据放入 ``.noinit`` 部分。放入该部分的值在启动时不会被初始化,在软件重启后也会保持值不变。
.. only:: esp32
通过使用 ``EXT_RAM_NOINIT_ATTR``noinit 数据也可以放入外部 RAM 中。为此,需要启用 :ref:`CONFIG_SPIRAM_ALLOW_NOINIT_SEG_EXTERNAL_MEMORY`,可参考 :ref:`external_ram_config_noinit`。如果没有启用 :ref:`CONFIG_SPIRAM_ALLOW_NOINIT_SEG_EXTERNAL_MEMORY` ``EXT_RAM_NOINIT_ATTR`` 会和 ``__NOINIT_ATTR`` 一样,将数据放入内部 RAM 的 ``.noinit`` 部分。
示例::
__NOINIT_ATTR uint32_t noinit_data;
.. _iram:
IRAM指令 RAM
~~~~~~~~~~~~~~~~
.. only:: esp32
ESP-IDF 将内部 SRAM0 的部分区域分配为指令 RAM。可在 *{IDF_TARGET_NAME} 技术参考手册* > *系统和存储器* > *内部存储器* [`PDF <{IDF_TARGET_TRM_CN_URL}#sysmem>`__] 中查看 IRAM 区域的定义。该内存中第一个 64 KB 块用于 PRO 和 APP MMU 缓存,其余部分(即从 ``0x40080000````0x400A0000``)用于存储需要从 RAM 运行的应用程序部分。
.. only:: esp32s2
ESP-IDF 将内部 SRAM 的部分区域分配为指令 RAM。可在 *{IDF_TARGET_NAME} 技术参考手册* > *系统和存储器* > *内部存储器* [`PDF <{IDF_TARGET_TRM_CN_URL}#sysmem>`__] 中查看 IRAM 区域的定义。该内存中第一个块(最多 32 KB用于 MMU 缓存,其余部分用于存储需要从 RAM 运行的应用程序部分。一些 ESP-IDF 的组件和 WiFi 协议栈的部分代码通过链接脚本文件被存放到了这块内存区域。
.. only:: not esp32
.. note:: 内部 SRAM 中不用于指令 RAM 的部分都会作为 :ref:`dram` 供静态数据和动态分配(堆)使用。
何时需要将代码放入 IRAM
======================================
以下情况时应将部分应用程序放入 IRAM
- 如果在注册中断处理程序时使用了 ``ESP_INTR_FLAG_IRAM``,则中断处理程序必须要放入 IRAM。更多信息可参考 :ref:`iram-safe-interrupt-handlers`
- 可将一些时序关键代码放入 IRAM以减少从 flash 中加载代码造成的相关损失。{IDF_TARGET_NAME} 通过 MMU 缓存从 flash 中读取代码和数据。在某些情况下,将函数放入 IRAM 可以减少由缓存未命中造成的延迟,从而显著提高函数的性能。
.. _how-to-place-code-in-iram:
如何将代码放入 IRAM
=====================================
借助链接器脚本,一些代码会被自动放入 IRAM 区域中。
如果需要将某些特定的应用程序代码放入 IRAM可以使用 :doc:`linker-script-generation` 功能并在组件中添加链接器脚本片段文件,在该片段文件中,可以给整个目标源文件或其中的个别函数打上 ``noflash`` 标签。更多信息可参考 :doc:`linker-script-generation`
或者,也可以通过使用 ``IRAM_ATTR`` 宏在源代码中指定需要放入 IRAM 的代码::
#include "esp_attr.h"
void IRAM_ATTR gpio_isr_handler(void* arg)
{
// ...
}
放入 IRAM 后可能会导致 IRAM 安全中断处理程序出现问题:
* ``IRAM_ATTR`` 函数中的字符串或常量可能没有自动放入 RAM 中,这时可以使用 ``DRAM_ATTR`` 属性进行标记,或者也可以使用链接器脚本方法将它们自动放入 RAM 中。
.. code-block:: c
void IRAM_ATTR gpio_isr_handler(void* arg)
{
const static DRAM_ATTR uint8_t INDEX_DATA[] = { 45, 33, 12, 0 };
const static char *MSG = DRAM_STR("I am a string stored in RAM");
}
注意,具体哪些数据需要被标记为 ``DRAM_ATTR`` 可能很难确定。如果没有被标记为 ``DRAM_ATTR``,某些变量或表达式有时会被编译器别为常量(即使它们没有被标记为 ``const``)并将其放入 flash 中。
* GCC 的优化会自动生成跳转表或 switch/case 查找表,并将这些表放在 flash 中。IDF 默认在编译所有文件时使用 ``-fno-jump-tables -fno-tree-switch-conversion`` 标志来避免这种情况。
可以为不需要放置在 IRAM 中的单个源文件重新启用跳转表优化。关于如何在编译单个源文件时添加 ``-fno-jump-tables -fno-tree-switch-conversion`` 选项,请参考 :ref:`component_build_control`
.. _irom:
IROM代码从 Flash 中运行)
~~~~~~~~~~~~~~~~~~~~~~~~~~~
如果一个函数没有被显式地声明放在 IRAM 或者 RTC 存储器中,则它会放在 flash 中。允许从 flash 中执行代码的 Flash MMU 机制可参考 {IDF_TARGET_NAME} 技术参考手册* > *存储器管理和保护单元 (MMU, MPU)* [`PDF <{IDF_TARGET_TRM_CN_URL}#mpummu>`__]。由于 IRAM 空间有限,应用程序的大部分二进制代码都需要放入 IROM 中。
:doc:`启动 <startup>` 过程中,从 IRAM 中运行的引导加载程序配置 MMU flash 缓存,将应用程序的指令代码区域映射到指令空间。通过 MMU 访问的 flash 使用一些内部 SRAM 进行缓存,访问缓存的 flash 数据与访问其他类型的内部存储器一样快。
RTC FAST memoryRTC 快速存储器)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
RTC FAST memory 的同一区域既可以作为指令存储器也可以作为数据存储器进行访问。从深度睡眠模式唤醒后必须要运行的代码要放在 RTC 存储器中,更多信息请查阅文档 :doc:`深度睡眠 <deep-sleep-stub>`
.. only:: esp32
RTC FAST memory 只可以被 PRO CPU 访问。
在单核模式下,除非禁用 :ref:`CONFIG_ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP` 选项,否则剩余的 RTC FAST memory 会被添加到堆中。该部分内存可以和 :ref:`DRAM` 互换使用,但是访问速度稍慢,且不具备 DMA 功能。
.. only:: not esp32s2
除非禁用 :ref:`CONFIG_ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP` 选项,否则剩余的 RTC FAST memory 会被添加到堆中。该部分内存可以和 :ref:`DRAM` 互换使用,但是访问速度稍慢一点。
.. _drom:
DROM数据存储在 flash 中)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. highlight:: c
默认情况下,链接器将常量数据放入一个映射到 MMU flash 缓存的区域中。这与 :ref:`irom` 部分相同,但此处用于只读数据而不是可执行代码。
唯一没有默认放入 DROM 的常量数据是被编译器嵌入到应用程序代码中的字面常量。这些被放置在周围函数的可执行指令中。
``DRAM_ATTR`` 属性可以用来强制将常量从 DRAM 放入 :ref:`dram` 部分(见上文)。
.. only:: SOC_RTC_SLOW_MEM_SUPPORTED
RTC Slow memoryRTC 慢速存储器)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
从 RTC 存储器运行的代码中使用的全局和静态变量必须放入 RTC Slow memory 中。例如 :doc:`深度睡眠 <deep-sleep-stub>` 变量可以放在 RTC Slow memory 中,而不是 RTC FAST memory或者也可以放入由 :doc:`/api-guides/ulp` 访问的代码和变量。
``RTC_NOINIT_ATTR`` 属性宏可以用来将数据放入 RTC Slow memory。放入此类型存储器的值从深度睡眠模式中醒来后会保持值不变。
示例::
RTC_NOINIT_ATTR uint32_t rtc_noinit_data;
具备 DMA 功能
^^^^^^^^^^^^^^^^^^^
.. highlight:: c
大多数的 DMA 控制器(比如 SPI、sdmmc 等)都要求发送/接收缓冲区放在 DRAM 中,并且按字对齐。我们建议将 DMA 缓冲区放在静态变量而不是堆栈中。使用 ``DMA_ATTR`` 宏可以声明该全局/本地的静态变量具备 DMA 功能,例如::
DMA_ATTR uint8_t buffer[]="I want to send something";
void app_main()
{
// 初始化代码
spi_transaction_t temp = {
.tx_buffer = buffer,
.length = 8 * sizeof(buffer),
};
spi_device_transmit(spi, &temp);
// 其它程序
}
或者::
void app_main()
{
DMA_ATTR static uint8_t buffer[] = "I want to send something";
// 初始化代码
spi_transaction_t temp = {
.tx_buffer = buffer,
.length = 8 * sizeof(buffer),
};
spi_device_transmit(spi, &temp);
// 其它程序
}
也可以通过使用 :ref:`MALLOC_CAP_DMA <dma-capable-memory>` 标志来动态分配具备 DMA 能力的内存缓冲区。
在堆栈中放置 DMA 缓冲区
^^^^^^^^^^^^^^^^^^^^^^^^^^^
可以在堆栈中放置 DMA 缓冲区,但建议尽量避免。如果实在有需要的话,请注意以下几点:
.. list::
:SOC_SPIRAM_SUPPORTED: - 如果堆栈在 PSRAM 中,则不建议将 DRAM 缓冲区放在堆栈上。如果任务堆栈在 PSRAM 中,则必须执行 :doc:`external-ram` 中描述的几个步骤。
- 在函数中使用 ``WORD_ALIGNED_ATTR`` 宏来修饰变量,将其放在适当的位置上,比如::
void app_main()
{
uint8_t stuff;
WORD_ALIGNED_ATTR uint8_t buffer[]="I want to send something"; //否则buffer数组会被存储在stuff变量的后面
// 初始化代码...
spi_transaction_t temp = {
.tx_buffer = buffer,
.length = 8*sizeof(buffer),
};
spi_device_transmit( spi, &temp );
// 其他程序
}