esp-idf/docs/zh_CN/api-guides/memory-types.rst

194 wiersze
6.8 KiB
ReStructuredText
Czysty Zwykły widok Historia

.. _memory-layout:
应用程序的内存布局
------------------
{IDF_TARGET_NAME} 芯片具有灵活的内存映射功能,本小节将介绍 ESP-IDF
默认使用这些功能的方式。
ESP-IDF 应用程序的代码可以放在以下内存区域之一。
IRAM指令 RAM
~~~~~~~~~~~~~~~~
ESP-IDF 将内部 SRAM0 区域(在技术参考手册中有定义)的一部分分配为指令
RAM。除了开始的 64kB 用作 PRO CPU 和 APP CPU
的高速缓存外,剩余内存区域(从 ``0x40080000``
``0x400A0000`` 被用来存储应用程序中部分需要在RAM中运行的代码。
一些 ESP-IDF 的组件和 WiFi
协议栈的部分代码通过链接脚本文件被存放到了这块内存区域。
如果一些应用程序的代码需要放在 IRAM 中运行,可以使用 ``IRAM_ATTR``
宏定义进行声明。
.. code:: c
#include "esp_attr.h"
void IRAM_ATTR gpio_isr_handler(void* arg)
{
// ...
}
下面列举了应用程序中可能或者应该放入 IRAM 中运行例子。
- 当注册中断处理程序的时候设置了
``ESP_INTR_FLAG_IRAM`` ,那么中断处理程序就必须要放在 IRAM
中运行。这种情况下ISR 只能调用存放在 IRAM 或者 ROM
中的函数。 *注意* :目前所有 FreeRTOS 的 API 都已经存放到了 IRAM
中,所以在中断中调用 FreeRTOS 的中断专属 API 是安全的。如果将 ISR
放在 IRAM 中运行,那么必须使用宏定义 ``DRAM_ATTR`` 将该 ISR
用到所有常量数据和调用的函数(包括但不限于 ``const char`` 数组)放入
DRAM 中。
- 可以将一些时间关键的代码放在 IRAM 中,这样可以缩减从 Flash
加载代码所消耗的时间。{IDF_TARGET_NAME} 是通过 32kB 的高速缓存来从外部 Flash
中读取代码和数据的,将函数放在 IRAM
中运行可以减少由高速缓存未命中引起的时间延迟。
IROM代码从 Flash 中运行)
~~~~~~~~~~~~~~~~~~~~~~~~~~~
如果一个函数没有被显式地声明放在 IRAM 或者 RTC 内存中,则将其置于 Flash
中。Flash 技术参考手册中介绍了 Flash MMU 允许代码从 Flash
执行的机制。ESP-IDF 将从 Flash 中执行的代码放在
``0x400D0000 — 0x40400000`` 区域的开始,在启动阶段,二级引导程序会初始化
Flash MMU将代码在 Flash
中的位置映射到这个区域的开头。对这个区域的访问会被透明地缓存到
``0x40070000 — 0x40080000`` 范围内的两个 32kB 的块中。
请注意,使用 Window ABI ``CALLx`` 指令可能无法访问
``0x40000000 — 0x40400000``
区域以外的代码,所以要特别留意应用程序是否使用了
``0x40400000 — 0x40800000`` 或者 ``0x40800000 — 0x40C00000``
区域ESP-IDF 默认不会使用这两个区域。
RTC 快速内存
~~~~~~~~~~~~
从深度睡眠模式唤醒后必须要运行的代码要放在 RTC
内存中,更多信息请查阅文档 :doc:`深度睡眠 <deep-sleep-stub>`
DRAM数据 RAM
~~~~~~~~~~~~~~~~
链接器将非常量静态数据和零初始化数据放入 ``0x3FFB0000 — 0x3FFF0000``
256kB 的区域。注意,如果使用蓝牙堆栈,此区域会减少
64kB通过将起始地址移至 ``0x3FFC0000`` )。如果使用了内存跟踪的功能,该区域的长度还要减少
16kB 或者 32kB。放置静态数据后留在此区域中的剩余空间都用作运行时堆。
常量数据也可以放在 DRAM 中,例如,用在 ISR 中的常量数据(参见上面 IRAM
部分的介绍),为此需要使用 ``DRAM_ATTR`` 宏来声明。
.. code:: c
DRAM_ATTR const char[] format_string = "%p %x";
char buffer[64];
sprintf(buffer, format_string, ptr, val);
毋庸置疑,不建议在 ISR 中使用 ``printf``
和其余输出函数。出于调试的目的,可以在 ISR 中使用 ``ESP_EARLY_LOGx``
来输出日志,不过要确保将 ``TAG`` 和格式字符串都放在了 ``DRAM`` 中。
``__NOINIT_ATTR`` 可以用来声明将数据放在 ``.noinit``
段中,放在此段中的数据不会在启动时被初始化,并且在软件重启后会保留原来的值。
例子:
.. code:: c
__NOINIT_ATTR uint32_t noinit_data;
DROM数据存储在 Flash 中)
~~~~~~~~~~~~~~~~~~~~~~~~~~~
默认情况下,链接器将常量数据放入一个 4MB 区域
(``0x3F400000 — 0x3F800000``) ,该区域用于通过 Flash MMU
和高速缓存来访问外部
Flash。一种特例情况是字面量会被编译器嵌入到应用程序代码中。
RTC 慢速内存
~~~~~~~~~~~~
从 RTC
内存运行的代码(例如深度睡眠模块的代码)使用的全局和静态变量必须要放在
RTC 慢速内存中。更多详细说明请查看文档
:doc:`深度睡眠 <deep-sleep-stub>`
``RTC_NOINIT_ATTR`` 用来声明将数据放入 RTC
慢速内存中,该数据在深度睡眠唤醒后将保持不变。
例子:
.. code:: c
RTC_NOINIT_ATTR uint32_t rtc_noinit_data;
DMA 能力要求
------------
大多数的 DMA 控制器(比如 SPISDMMC 等)都要求发送/接收缓冲区放在 DRAM
中,并且按字对齐。我们建议将 DMA 缓冲区放在静态变量中而不是堆栈中。使用
``DMA_ATTR`` 宏可以声明该全局/本地的静态变量具备 DMA 能力,例如:
.. code:: c
DMA_ATTR uint8_t buffer[]="I want to send something";
void app_main()
{
// 初始化代码...
spi_transaction_t temp = {
.tx_buffer = buffer,
.length = 8*sizeof(buffer),
};
spi_device_transmit( spi, &temp );
// 其他程序
}
或者:
.. code:: c
void app_main()
{
DMA_ATTR static uint8_t buffer[]="I want to send something";
// 初始化代码...
spi_transaction_t temp = {
.tx_buffer = buffer,
.length = 8*sizeof(buffer),
};
spi_device_transmit( spi, &temp );
// 其他程序
}
在堆栈中放置 DMA 缓冲区仍然是允许的,但是你必须记住:
.. list::
:SOC_SPIRAM_SUPPORTED:- 如果堆栈在 pSRAM 中,切勿尝试这么做,因为堆栈在 pSRAM 中的话就要按照
:doc:`片外SRAM <external-ram>` 文档介绍的步骤来操作(至少要在
``menuconfig`` 中使能
``SPIRAM_ALLOW_STACK_EXTERNAL_MEMORY`` ),所以请确保你的任务不在
pSRAM 中。
- 在函数中使用 ``WORD_ALIGNED_ATTR``
宏来修饰变量,将其放在适当的位置上,比如:
.. code:: c
void app_main()
{
uint8_t stuff;
WORD_ALIGNED_ATTR uint8_t buffer[]="I want to send something"; //否则buffer数组会被存储在stuff变量的后面
// 初始化代码...
spi_transaction_t temp = {
.tx_buffer = buffer,
.length = 8*sizeof(buffer),
};
spi_device_transmit( spi, &temp );
// 其他程序
}