An open source multi-tool for exploring and publishing data
 
 
 
 
 
 
Go to file
Marjorie Roswell 7b1a9a1999
Fix little typo (#1282)
2021-03-29 12:57:34 -07:00
.github Explicitly push version tag, refs #1281 2021-03-28 18:42:42 -07:00
datasette Fix little typo (#1282) 2021-03-29 12:57:34 -07:00
docs Release 0.56 2021-03-28 17:41:12 -07:00
tests Applied some fixes suggested by @withshubh in #1260 2021-03-28 17:20:55 -07:00
.coveragerc
.dockerignore Build Dockerfile with SpatiaLite 5, refs #1249 2021-03-26 21:27:40 -07:00
.gitattributes
.gitignore
.isort.cfg
.prettierrc
Dockerfile Build Dockerfile with SpatiaLite 5, refs #1249 2021-03-26 21:27:40 -07:00
LICENSE
MANIFEST.in
README.md Updated demo and video links 2021-02-07 19:27:02 -08:00
codecov.yml
package-lock.json
package.json Easier way to run Prettier locally (#1203) 2021-01-24 17:41:46 -08:00
pytest.ini
setup.cfg
setup.py Use context manager instead of plain open (#1211) 2021-03-11 08:15:49 -08:00
update-docs-help.py Use context manager instead of plain open (#1211) 2021-03-11 08:15:49 -08:00

README.md

Datasette

PyPI Changelog Python 3.x Tests Documentation Status License docker: datasette

An open source multi-tool for exploring and publishing data

Datasette is a tool for exploring and publishing data. It helps people take data of any shape or size and publish that as an interactive, explorable website and accompanying API.

Datasette is aimed at data journalists, museum curators, archivists, local governments and anyone else who has data that they wish to share with the world.

Explore a demo, watch a video about the project or try it out by uploading and publishing your own CSV data.

Want to stay up-to-date with the project? Subscribe to the Datasette Weekly newsletter for tips, tricks and news on what's new in the Datasette ecosystem.

Installation

If you are on a Mac, Homebrew is the easiest way to install Datasette:

brew install datasette

You can also install it using pip or pipx:

pip install datasette

Datasette requires Python 3.6 or higher. We also have detailed installation instructions covering other options such as Docker.

Basic usage

datasette serve path/to/database.db

This will start a web server on port 8001 - visit http://localhost:8001/ to access the web interface.

serve is the default subcommand, you can omit it if you like.

Use Chrome on OS X? You can run datasette against your browser history like so:

 datasette ~/Library/Application\ Support/Google/Chrome/Default/History

Now visiting http://localhost:8001/History/downloads will show you a web interface to browse your downloads data:

Downloads table rendered by datasette

datasette serve options

Usage: datasette serve [OPTIONS] [FILES]...

  Serve up specified SQLite database files with a web UI

Options:
  -i, --immutable PATH      Database files to open in immutable mode
  -h, --host TEXT           Host for server. Defaults to 127.0.0.1 which means
                            only connections from the local machine will be
                            allowed. Use 0.0.0.0 to listen to all IPs and
                            allow access from other machines.
  -p, --port INTEGER        Port for server, defaults to 8001
  --reload                  Automatically reload if database or code change
                            detected - useful for development
  --cors                    Enable CORS by serving Access-Control-Allow-
                            Origin: *
  --load-extension PATH     Path to a SQLite extension to load
  --inspect-file TEXT       Path to JSON file created using "datasette
                            inspect"
  -m, --metadata FILENAME   Path to JSON file containing license/source
                            metadata
  --template-dir DIRECTORY  Path to directory containing custom templates
  --plugins-dir DIRECTORY   Path to directory containing custom plugins
  --static STATIC MOUNT     mountpoint:path-to-directory for serving static
                            files
  --memory                  Make /_memory database available
  --config CONFIG           Set config option using configname:value
                            docs.datasette.io/en/stable/config.html
  --version-note TEXT       Additional note to show on /-/versions
  --help-config             Show available config options
  --help                    Show this message and exit.

metadata.json

If you want to include licensing and source information in the generated datasette website you can do so using a JSON file that looks something like this:

{
    "title": "Five Thirty Eight",
    "license": "CC Attribution 4.0 License",
    "license_url": "http://creativecommons.org/licenses/by/4.0/",
    "source": "fivethirtyeight/data on GitHub",
    "source_url": "https://github.com/fivethirtyeight/data"
}

Save this in metadata.json and run Datasette like so:

datasette serve fivethirtyeight.db -m metadata.json

The license and source information will be displayed on the index page and in the footer. They will also be included in the JSON produced by the API.

datasette publish

If you have Heroku or Google Cloud Run configured, Datasette can deploy one or more SQLite databases to the internet with a single command:

datasette publish heroku database.db

Or:

datasette publish cloudrun database.db

This will create a docker image containing both the datasette application and the specified SQLite database files. It will then deploy that image to Heroku or Cloud Run and give you a URL to access the resulting website and API.

See Publishing data in the documentation for more details.