chatgpt-api/readme.md

195 wiersze
15 KiB
Markdown

<p align="center">
<a href="https://trywalter.ai"><img alt="Agentic" src="/media/agentic-header.jpg" width="308"></a>
</p>
<p align="center">
<em>AI agent stdlib that works with any AI SDK and LLM</em>
</p>
<p align="center">
<a href="https://github.com/transitive-bullshit/walter/actions/workflows/main.yml"><img alt="Build Status" src="https://github.com/transitive-bullshit/walter/actions/workflows/main.yml/badge.svg" /></a>
<a href="https://www.npmjs.com/package/@agentic/stdlib"><img alt="NPM" src="https://img.shields.io/npm/v/@agentic/stdlib.svg" /></a>
<a href="https://github.com/transitive-bullshit/walter/blob/main/license"><img alt="MIT License" src="https://img.shields.io/badge/license-MIT-blue" /></a>
<a href="https://prettier.io"><img alt="Prettier Code Formatting" src="https://img.shields.io/badge/code_style-prettier-brightgreen.svg" /></a>
</p>
# Agentic <!-- omit from toc -->
> [!WARNING]
> TODO: this project is not published yet and is an active WIP.
The goal of this project is to create a **set of standard AI functions / tools** which are **optimized for both normal TS-usage as well as LLM-based usage** across any popular AI SDK via simple adaptors.
For example, all of the stdlib tools like `WeatherClient` can be used both as normal, fully-typed TS SDKs:
```ts
import { WeatherClient } from '@agentic/stdlib'
const weather = new WeatherClient() // (requires `WEATHER_API_KEY` env var)
const result = await clearbit.getCurrentWeather({
q: 'San Francisco'
})
console.log(result)
```
Or you can use them as a set of LLM-based functions / tools using adaptors specific to each LLM SDK. This example uses [Vercel's AI SDK](https://github.com/vercel/ai):
```ts
// sdk-specific imports
import { openai } from '@ai-sdk/openai'
import { generateText } from 'ai'
import { createAISDKTools } from '@agentic/stdlib/ai-sdk'
// sdk-agnostic imports
import { WeatherClient } from '@agentic/stdlib'
const weather = new WeatherClient()
const result = await generateText({
model: openai('gpt-4o'),
tools: createAISDKTools(weather),
toolChoice: 'required',
prompt: 'What is the weather in San Francisco?'
})
console.log(result.toolResults[0])
```
Let's take a slightly more complicated example which uses multiple clients and selects a subset of their functions using the `pick` method:
```ts
// sdk-specific imports
import { ChatModel, createAIRunner } from '@dexaai/dexter'
import { createDexterFunctions } from '@agentic/stdlib/dexter'
// sdk-agnostic imports
import { PerigonClient, SerperClient } from '@agentic/stdlib'
async function main() {
const perigon = new PerigonClient()
const serper = new SerperClient()
const runner = createAIRunner({
chatModel: new ChatModel({
params: { model: 'gpt-4o', temperature: 0 }
}),
functions: createDexterFunctions(
perigon.functions.pick('search_news_stories'),
serper
),
systemMessage:
'You are a helpful assistant. Be as concise as possible. Respond in markdown. Always cite your sources.'
})
const result = await runner(
'Summarize the latest news stories about the upcoming US election.'
)
console.log(result)
}
```
Here we've exposed 2 functions to the LLM, `search_news_stories` which corresponds to the `PerigonClient.searchStories` method and `serper_google_search` via the `SerperClient.search` method.
All of the SDK adaptors like `createDexterFunctions` are very flexible in what they accept. `AIFunctionLike` objects include:
- `AIFunctionSet` - Sets of AI functions (like `perigon.functions.pick('search_news_stories')` or `perigon.functions` or `serper.functions`)
- `AIFunctionsProvider` - Client classes which expose an `AIFunctionSet` via the `.functions` property (like `perigon` or `serper`)
- `AIFunction` - Individual functions (like `perigon.functions.get('search_news_stories')` or `serper.functions.get('serper_google_search')`)
You can pass as many or as few of these `AIFunctionLike` objects as you'd like and you can manipulate them as `AIFunctionSet` objects via `.pick`, `.omit`, `.get`, `.map`, etc.
The SDK-specific imports are all isolated to keep the main `@agentic/stdlib` as lightweight as possible.
## Client Goals
- clients should be as minimal as possible
- clients must use `ky` as a lightweight native fetch wrapper
- clients must have a strongly-typed TS DX
- clients should expose select methods via the `@aiFunction(...)` decorator
- `@aiFunction` methods must use `zod` for input schema validation
- it should be easy to create external clients which follow the `AIFunctionsProvider` superclass / `@aiFunction` decorator pattern
- common utility functions for LLM-based function calling should be exported for convenience
- clients and AIFunctions should be composable via `AIFunctionSet`
- clients must work with all major TS AI SDKs
- SDK adaptors should be as lightweight as possible and be optional peer dependencies of `@agentic/stdlib`
- SDK adatptor entrypoints should all be isolated to their own top-level imports
- `@agentic/stdlib/ai-sdk`
- `@agentic/stdlib/langchain`
- `@agentic/stdlib/llamaindex`
- `@agentic/stdlib/dexter`
- `@agentic/stdlib/genkit`
## Services
| Service | Client | Description |
| ------------------------------------------------------------------------ | ---------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| [Bing](https://www.microsoft.com/en-us/bing/apis/bing-web-search-api) | `BingClient` | Bing web search |
| [Clearbit](https://dashboard.clearbit.com/docs) | `ClearbitClient` | Resolving and enriching people and company data |
| [Dexa](https://dexa.ai) | `DexaClient` | Answers questions from the world's best podcasters |
| [Diffbot](https://docs.diffbot.com) | `DiffbotClient` | Web page classification and scraping; person and company data enrichment |
| [Exa](https://docs.exa.ai) | `ExaClient` | Web search tailored for LLMs |
| [Firecrawl](https://www.firecrawl.dev) | `FirecrawlClient` | Website scraping and sanitization |
| [Midjourney](https://www.imagineapi.dev) | `MidjourneyClient` | Unofficial Midjourney client for generative images |
| [Novu](https://novu.co) | `NovuClient` | Sending notifications (email, SMS, in-app, push, etc) |
| [People Data Labs](https://www.peopledatalabs.com) | `PeopleDataLabsClient` | People & company data (WIP) |
| [Perigon](https://www.goperigon.com/products/news-api) | `PerigonClient` | Real-time news API and web content data from 140,000+ sources. Structured and enriched by AI, primed for LLMs. |
| [Polygon](https://polygon.io) | `PolygonClient` | Stock market and company financial data |
| [PredictLeads](https://predictleads.com) | `PredictLeadsClient` | In-depth company data including signals like fundraising events, hiring news, product launches, technologies used, etc |
| [Proxycurl](https://nubela.co/proxycurl) | `ProxycurlClient` | People and company data from LinkedIn & Crunchbase |
| Scraper | `ScraperClient` | Scrapes URLs into clean html/markdown/text content (TODO: currently closed beta) |
| [Searxng](https://docs.searxng.org) | `SearxngClient` | OSS meta search engine capable of searching across many providers like Reddit, Google, Brave, Arxiv, Genius, IMDB, Rotten Tomatoes, Wikidata, Wolfram Alpha, YouTube, GitHub, [etc](https://docs.searxng.org/user/configured_engines.html#configured-engines) |
| [SerpAPI](https://serpapi.com/search-api) | `SerpAPIClient` | Lightweight wrapper around SerpAPI for Google search |
| [Serper](https://serper.dev) | `SerperClient` | Lightweight wrapper around Serper for Google search |
| [Twitter](https://developer.x.com/en/docs/twitter-api) | `TwitterClient` | Basic Twitter API methods for fetching users, tweets, and searching recent tweets. Includes support for plan-aware rate-limiting. |
| [WeatherAPI](https://api.weatherapi.com) | `WeatherClient` | Basic access to current weather data based on location |
| [Wikipedia](https://www.mediawiki.org/wiki/API) | `WikipediaClient` | Wikipedia page search and summaries |
| [Wolfram Alpha](https://products.wolframalpha.com/llm-api/documentation) | `WolframAlphaClient` | Wolfram Alpha LLM API client for answering computational, mathematical, and scientific questions. |
## Non-service Tools
- calculator
- e2b (code interpreter)
- search and scrape
## AI SDKs
- OpenAI SDK
- no need for an adaptor; use `AIFunctionSet.specs` or `AIFunctionSet.toolSpecs`
- Vercel AI SDK
- `import { createAISDKTools } from '@agentic/stdlib/ai-sdk'`
- LangChain
- `import { createLangChainTools } from '@agentic/stdlib/langchain'`
- LlamaIndex
- `import { createLlamaIndexTools } from '@agentic/stdlib/llamaindex'`
- Firebase Genkit
- `import { createGenkitTools } from '@agentic/stdlib/genkit'`
- Dexa Dexter
- `import { createDexterFunctions } from '@agentic/stdlib/dexter'`
## TODO
- rename this repo to agentic
- services
- replicate
- huggingface
- [skyvern](https://github.com/Skyvern-AI/skyvern)
- unstructured
- pull from [langchain](https://github.com/langchain-ai/langchainjs/tree/main/langchain)
- provide a converter for langchain `DynamicStructuredTool`
- pull from [nango](https://docs.nango.dev/integrations/overview)
- pull from [activepieces](https://github.com/activepieces/activepieces/tree/main/packages/pieces/community)
- general openapi support ala [workgpt](https://github.com/team-openpm/workgpt)
- tools / chains / flows / runnables
- market maps
- https://github.com/causaly/zod-validation-error
- investigate [autotool](https://github.com/run-llama/LlamaIndexTS/tree/main/packages/autotool)
- investigate [data connectors](https://github.com/mendableai/data-connectors)
## License
MIT © [Travis Fischer](https://twitter.com/transitive_bs)
To stay up to date or learn more, follow [@transitive_bs](https://twitter.com/transitive_bs) on Twitter.