kopia lustrzana https://github.com/vilemduha/blendercam
250 wiersze
11 KiB
Python
250 wiersze
11 KiB
Python
"""
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
// Public Domain Parametric Involute Spur Gear (and involute helical gear and involute rack)
|
|
// version 1.1
|
|
// by Leemon Baird, 2011, Leemon@Leemon.com
|
|
//http://www.thingiverse.com/thing:5505
|
|
//
|
|
// This file is public domain. Use it for any purpose, including commercial
|
|
// applications. Attribution would be nice, but is not required. There is
|
|
// no warranty of any kind, including its correctness, usefulness, or safety.
|
|
//
|
|
// This is parameterized involute spur (or helical) gear. It is much simpler and less powerful than
|
|
// others on Thingiverse. But it is public domain. I implemented it from scratch from the
|
|
// descriptions and equations on Wikipedia and the web, using Mathematica for calculations and testing,
|
|
// and I now release it into the public domain.
|
|
//
|
|
// http://en.wikipedia.org/wiki/Involute_gear
|
|
// http://en.wikipedia.org/wiki/Gear
|
|
// http://en.wikipedia.org/wiki/List_of_gear_nomenclature
|
|
// http://gtrebaol.free.fr/doc/catia/spur_gear.html
|
|
// http://www.cs.cmu.edu/~rapidproto/mechanisms/chpt7.html
|
|
//
|
|
// The module gear() gives an involute spur gear, with reasonable defaults for all the parameters.
|
|
// Normally, you should just choose the first 4 parameters, and let the rest be default values.
|
|
// The module gear() gives a gear in the XY plane, centered on the origin, with one tooth centered on
|
|
// the positive Y axis. The various functions below it take the same parameters, and return various
|
|
// measurements for the gear. The most important is pitch_radius, which tells how far apart to space
|
|
// gears that are meshing, and adendum_radius, which gives the size of the region filled by the gear.
|
|
// A gear has a "pitch circle", which is an invisible circle that cuts through the middle of each
|
|
// tooth (though not the exact center). In order for two gears to mesh, their pitch circles should
|
|
// just touch. So the distance between their centers should be pitch_radius() for one, plus pitch_radius()
|
|
// for the other, which gives the radii of their pitch circles.
|
|
//
|
|
// In order for two gears to mesh, they must have the same mm_per_tooth and pressure_angle parameters.
|
|
// mm_per_tooth gives the number of millimeters of arc around the pitch circle covered by one tooth and one
|
|
// space between teeth. The pitch angle controls how flat or bulged the sides of the teeth are. Common
|
|
// values include 14.5 degrees and 20 degrees, and occasionally 25. Though I've seen 28 recommended for
|
|
// plastic gears. Larger numbers bulge out more, giving stronger teeth, so 28 degrees is the default here.
|
|
//
|
|
// The ratio of number_of_teeth for two meshing gears gives how many times one will make a full
|
|
// revolution when the the other makes one full revolution. If the two numbers are coprime (i.e.
|
|
// are not both divisible by the same number greater than 1), then every tooth on one gear
|
|
// will meet every tooth on the other, for more even wear. So coprime numbers of teeth are good.
|
|
//
|
|
// The module rack() gives a rack, which is a bar with teeth. A rack can mesh with any
|
|
// gear that has the same mm_per_tooth and pressure_angle.
|
|
//
|
|
// Some terminology:
|
|
// The outline of a gear is a smooth circle (the "pitch circle") which has mountains and valleys
|
|
// added so it is toothed. So there is an inner circle (the "root circle") that touches the
|
|
// base of all the teeth, an outer circle that touches the tips of all the teeth,
|
|
// and the invisible pitch circle in between them. There is also a "base circle", which can be smaller than
|
|
// all three of the others, which controls the shape of the teeth. The side of each tooth lies on the path
|
|
// that the end of a string would follow if it were wrapped tightly around the base circle, then slowly unwound.
|
|
// That shape is an "involute", which gives this type of gear its name.
|
|
//
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//An involute spur gear, with reasonable defaults for all the parameters.
|
|
//Normally, you should just choose the first 4 parameters, and let the rest be default values.
|
|
//Meshing gears must match in mm_per_tooth, pressure_angle, and twist,
|
|
//and be separated by the sum of their pitch radii, which can be found with pitch_radius(). """
|
|
|
|
# ported to Blendercam by Alain Pelletier Jan 2022
|
|
|
|
|
|
import bpy
|
|
from bpy.props import *
|
|
from bpy.types import Operator
|
|
|
|
from . import (
|
|
utils,
|
|
polygon_utils_cam,
|
|
simple,
|
|
)
|
|
import shapely
|
|
from shapely.geometry import (
|
|
Point,
|
|
LineString,
|
|
Polygon
|
|
)
|
|
import mathutils
|
|
import math
|
|
|
|
|
|
# convert gear_polar to cartesian coordinates
|
|
def gear_polar(r, theta):
|
|
return r * math.sin(theta), r * math.cos(theta)
|
|
|
|
|
|
# unwind a string this many degrees to go from radius r1 to radius r2
|
|
def gear_iang(r1, r2):
|
|
return math.sqrt((r2 / r1) * (r2 / r1) - 1) - math.acos(r1 / r2)
|
|
|
|
|
|
# radius a fraction f up the curved side of the tooth
|
|
def gear_q7(f, r, b, r2, t, s):
|
|
return gear_q6(b, s, t, (1-f) * max(b, r) + f * r2)
|
|
|
|
|
|
# point at radius d on the involute curve
|
|
def gear_q6(b, s, t, d):
|
|
return gear_polar(d, s * (gear_iang(b, d) + t))
|
|
|
|
# mm_per_tooth = this is the "circular pitch", the circumference of the pitch circle divided by the number of teeth
|
|
# number_of_teeth = total number of teeth around the entire perimeter
|
|
# hole_diameter = diameter of the hole in the center, in mm
|
|
# pressure_angle = Controls how straight or bulged the tooth sides are. In radians.
|
|
# clearance = gap between top of a tooth on one gear and bottom of valley on a meshing gear( in millimeters)
|
|
# backlash = gap between two meshing teeth, in the direction along the circumference of the pitch circle
|
|
|
|
|
|
def gear(mm_per_tooth=0.003, number_of_teeth=5, hole_diameter=0.003175,
|
|
pressure_angle=0.3488, clearance=0.0, backlash=0.0, rim_size=0.0005, hub_diameter=0.006, spokes=4):
|
|
simple.deselect()
|
|
pi = math.pi
|
|
p = mm_per_tooth * number_of_teeth / pi / 2 # radius of pitch circle
|
|
c = p + mm_per_tooth / pi - clearance # radius of outer circle
|
|
b = p * math.cos(pressure_angle) # radius of base circle
|
|
r = p-(c-p)-clearance # radius of root circle
|
|
t = mm_per_tooth / 2 - backlash / 2 # tooth thickness at pitch circle
|
|
# angle to where involute meets base circle on each side of tooth
|
|
k = - gear_iang(b, p) - t / 2 / p
|
|
shapely_gear = Polygon([
|
|
(0, 0),
|
|
gear_polar(r, k if r < b else -pi / number_of_teeth),
|
|
gear_q7(0, r, b, c, k, 1),
|
|
gear_q7(0.1, r, b, c, k, 1),
|
|
gear_q7(0.2, r, b, c, k, 1),
|
|
gear_q7(0.3, r, b, c, k, 1),
|
|
gear_q7(0.4, r, b, c, k, 1),
|
|
gear_q7(0.5, r, b, c, k, 1),
|
|
gear_q7(0.6, r, b, c, k, 1),
|
|
gear_q7(0.7, r, b, c, k, 1),
|
|
gear_q7(0.8, r, b, c, k, 1),
|
|
gear_q7(0.9, r, b, c, k, 1),
|
|
gear_q7(1.0, r, b, c, k, 1),
|
|
gear_q7(1.0, r, b, c, k, -1),
|
|
gear_q7(0.9, r, b, c, k, -1),
|
|
gear_q7(0.8, r, b, c, k, -1),
|
|
gear_q7(0.7, r, b, c, k, -1),
|
|
gear_q7(0.6, r, b, c, k, -1),
|
|
gear_q7(0.5, r, b, c, k, -1),
|
|
gear_q7(0.4, r, b, c, k, -1),
|
|
gear_q7(0.3, r, b, c, k, -1),
|
|
gear_q7(0.2, r, b, c, k, -1),
|
|
gear_q7(0.1, r, b, c, k, -1),
|
|
gear_q7(0.0, r, b, c, k, -1),
|
|
gear_polar(r, -k if r < b else pi / number_of_teeth)
|
|
])
|
|
utils.shapelyToCurve('tooth', shapely_gear, 0.0)
|
|
i = number_of_teeth
|
|
while i > 1:
|
|
simple.duplicate()
|
|
simple.rotate(2 * math.pi / number_of_teeth)
|
|
i -= 1
|
|
simple.join_multiple('tooth')
|
|
simple.active_name('_teeth')
|
|
|
|
bpy.ops.curve.simple(align='WORLD', location=(0, 0, 0), rotation=(0, 0, 0), Simple_Type='Circle',
|
|
Simple_radius=r, shape='3D', use_cyclic_u=True, edit_mode=False)
|
|
simple.active_name('_hub')
|
|
simple.union('_')
|
|
simple.active_name('_gear')
|
|
simple.remove_doubles()
|
|
|
|
if spokes > 0:
|
|
bpy.ops.curve.simple(align='WORLD', location=(0, 0, 0), rotation=(0, 0, 0), Simple_Type='Circle',
|
|
Simple_radius=r-rim_size, shape='3D', use_cyclic_u=True, edit_mode=False)
|
|
simple.active_name('_hole')
|
|
simple.difference('_', '_gear')
|
|
bpy.ops.curve.simple(align='WORLD', location=(0, 0, 0), rotation=(0, 0, 0), Simple_Type='Circle',
|
|
Simple_radius=hub_diameter/2, shape='3D', use_cyclic_u=True, edit_mode=False)
|
|
simple.active_name('_hub')
|
|
bpy.ops.curve.simple(align='WORLD', location=(0, 0, 0), rotation=(0, 0, 0), Simple_Type='Circle',
|
|
Simple_radius=hole_diameter/2, shape='3D', use_cyclic_u=True, edit_mode=False)
|
|
simple.active_name('_hub_hole')
|
|
simple.difference('_hub', '_hub')
|
|
|
|
simple.join_multiple('_')
|
|
|
|
simple.add_rectangle(r-rim_size-((hub_diameter-hole_diameter)/4 +
|
|
hole_diameter/2), hub_diameter/2, center_x=False)
|
|
simple.move(x=(hub_diameter-hole_diameter)/4 + hole_diameter/2)
|
|
simple.active_name('_spoke')
|
|
|
|
angle = 2 * pi / spokes
|
|
while spokes > 0:
|
|
simple.duplicate()
|
|
simple.rotate(angle)
|
|
spokes -= 1
|
|
simple.union('_spoke')
|
|
simple.remove_doubles()
|
|
simple.union('_')
|
|
else:
|
|
bpy.ops.curve.simple(align='WORLD', location=(0, 0, 0), rotation=(0, 0, 0), Simple_Type='Circle',
|
|
Simple_radius=hole_diameter, shape='3D', use_cyclic_u=True, edit_mode=False)
|
|
simple.active_name('_hole')
|
|
simple.difference('_', '_gear')
|
|
|
|
name = 'gear-' + str(round(mm_per_tooth*1000, 1))
|
|
name += 'mm-pitch-' + str(number_of_teeth)
|
|
name += 'teeth-PA-' + str(round(math.degrees(pressure_angle), 1))
|
|
simple.active_name(name)
|
|
|
|
|
|
def rack(mm_per_tooth=0.01, number_of_teeth=11, height=0.012, pressure_angle=0.3488, backlash=0.0,
|
|
hole_diameter=0.003175, tooth_per_hole=4):
|
|
simple.deselect()
|
|
pi = math.pi
|
|
mm_per_tooth *= 1000
|
|
a = mm_per_tooth / pi # addendum
|
|
# tooth side is tilted so top/bottom corners move this amount
|
|
t = (a * math.sin(pressure_angle))
|
|
a /= 1000
|
|
mm_per_tooth /= 1000
|
|
t /= 1000
|
|
|
|
shapely_gear = Polygon([
|
|
(-mm_per_tooth * 2/4*1.001, a-height),
|
|
(-mm_per_tooth * 2/4*1.001 - backlash, -a),
|
|
(-mm_per_tooth * 1/4 + backlash - t, -a),
|
|
(-mm_per_tooth * 1/4 + backlash + t, a),
|
|
(mm_per_tooth * 1/4 - backlash - t, a),
|
|
(mm_per_tooth * 1/4 - backlash + t, -a),
|
|
(mm_per_tooth * 2/4*1.001 + backlash, -a),
|
|
(mm_per_tooth * 2/4*1.001, a-height)
|
|
])
|
|
|
|
utils.shapelyToCurve('_tooth', shapely_gear, 0.0)
|
|
i = number_of_teeth
|
|
while i > 1:
|
|
simple.duplicate(x=mm_per_tooth)
|
|
i -= 1
|
|
simple.union('_tooth')
|
|
simple.move(y=height/2)
|
|
if hole_diameter > 0:
|
|
bpy.ops.curve.simple(align='WORLD', location=(mm_per_tooth/2, 0, 0), rotation=(0, 0, 0), Simple_Type='Circle',
|
|
Simple_radius=hole_diameter/2, shape='3D', use_cyclic_u=True, edit_mode=False)
|
|
simple.active_name('_hole')
|
|
distance = (number_of_teeth-1) * mm_per_tooth
|
|
while distance > tooth_per_hole * mm_per_tooth:
|
|
simple.duplicate(x=tooth_per_hole * mm_per_tooth)
|
|
distance -= tooth_per_hole * mm_per_tooth
|
|
simple.difference('_', '_tooth')
|
|
|
|
name = 'rack-' + str(round(mm_per_tooth * 1000, 1))
|
|
name += '-PA-' + str(round(math.degrees(pressure_angle), 1))
|
|
simple.active_name(name)
|