kopia lustrzana https://github.com/vilemduha/blendercam
245 wiersze
8.8 KiB
Python
245 wiersze
8.8 KiB
Python
![]() |
"""Fabex 'parametric.py' © 2019 Devon (Gorialis) R
|
||
![]() |
|
||
|
MIT License
|
||
|
|
||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
of this software and associated documentation files (the "Software"), to deal
|
||
|
in the Software without restriction, including without limitation the rights
|
||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
copies of the Software, and to permit persons to whom the Software is
|
||
|
furnished to do so, subject to the following conditions:
|
||
|
|
||
|
The above copyright notice and this permission notice shall be included in all
|
||
|
copies or substantial portions of the Software.
|
||
|
|
||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
|
|
||
|
Summary:
|
||
|
Create a Blender curve from a 3D parametric function.
|
||
|
This allows for a 3D plot to be made of the function, which can be converted into a mesh.
|
||
|
|
||
|
I have documented the inner workings here, but if you're not interested and just want to
|
||
|
suit this to your own function, scroll down to the bottom and edit the `f(t)` function and
|
||
|
the iteration count to your liking.
|
||
|
|
||
|
This code has been checked to work on Blender 2.92.
|
||
|
"""
|
||
|
|
||
![]() |
from math import pow
|
||
![]() |
|
||
![]() |
import bpy
|
||
|
from mathutils import Vector
|
||
![]() |
|
||
|
|
||
![]() |
def derive_bezier_handles(a, b, c, d, tb, tc):
|
||
|
"""
|
||
|
Derives bezier handles by using the start and end of the curve with 2 intermediate
|
||
|
points to use for interpolation.
|
||
|
|
||
|
:param a:
|
||
|
The start point.
|
||
|
:param b:
|
||
|
The first mid-point, located at `tb` on the bezier segment, where 0 < `tb` < 1.
|
||
|
:param c:
|
||
|
The second mid-point, located at `tc` on the bezier segment, where 0 < `tc` < 1.
|
||
|
:param d:
|
||
|
The end point.
|
||
|
:param tb:
|
||
|
The position of the first point in the bezier segment.
|
||
|
:param tc:
|
||
|
The position of the second point in the bezier segment.
|
||
|
:return:
|
||
|
A tuple of the two intermediate handles, that is, the right handle of the start point
|
||
|
and the left handle of the end point.
|
||
|
"""
|
||
|
|
||
|
# Calculate matrix coefficients
|
||
![]() |
matrix_a = 3 * pow(1 - tb, 2) * tb
|
||
|
matrix_b = 3 * (1 - tb) * pow(tb, 2)
|
||
|
matrix_c = 3 * pow(1 - tc, 2) * tc
|
||
|
matrix_d = 3 * (1 - tc) * pow(tc, 2)
|
||
![]() |
|
||
|
# Calculate the matrix determinant
|
||
|
matrix_determinant = 1 / ((matrix_a * matrix_d) - (matrix_b * matrix_c))
|
||
|
|
||
|
# Calculate the components of the target position vector
|
||
![]() |
final_b = b - (pow(1 - tb, 3) * a) - (pow(tb, 3) * d)
|
||
|
final_c = c - (pow(1 - tc, 3) * a) - (pow(tc, 3) * d)
|
||
![]() |
|
||
|
# Multiply the inversed matrix with the position vector to get the handle points
|
||
![]() |
bezier_b = matrix_determinant * ((matrix_d * final_b) + (-matrix_b * final_c))
|
||
|
bezier_c = matrix_determinant * ((-matrix_c * final_b) + (matrix_a * final_c))
|
||
![]() |
|
||
|
# Return the handle points
|
||
![]() |
return bezier_b, bezier_c
|
||
![]() |
|
||
|
|
||
|
def create_parametric_curve(
|
||
![]() |
function,
|
||
|
*args,
|
||
|
min: float = 0.0,
|
||
|
max: float = 1.0,
|
||
|
use_cubic: bool = True,
|
||
|
iterations: int = 8,
|
||
|
resolution_u: int = 10,
|
||
![]() |
**kwargs,
|
||
![]() |
):
|
||
![]() |
"""
|
||
|
Creates a Blender bezier curve object from a parametric function.
|
||
|
This "plots" the function in 3D space from `min <= t <= max`.
|
||
|
|
||
|
:param function:
|
||
|
The function to plot as a Blender curve.
|
||
|
|
||
|
This function should take in a float value of `t` and return a 3-item tuple or list
|
||
|
of the X, Y and Z coordinates at that point:
|
||
|
`function(t) -> (x, y, z)`
|
||
|
|
||
|
`t` is plotted according to `min <= t <= max`, but if `use_cubic` is enabled, this function
|
||
|
needs to be able to take values less than `min` and greater than `max`.
|
||
|
:param *args:
|
||
|
Additional positional arguments to be passed to the plotting function.
|
||
|
These are not required.
|
||
|
:param use_cubic:
|
||
|
Whether or not to calculate the cubic bezier handles as to create smoother splines.
|
||
|
Turning this off reduces calculation time and memory usage, but produces more jagged
|
||
|
splines with sharp edges.
|
||
|
:param iterations:
|
||
|
The 'subdivisions' of the parametric to plot.
|
||
|
Setting this higher produces more accurate curves but increases calculation time and
|
||
|
memory usage.
|
||
|
:param resolution_u:
|
||
|
The preview surface resolution in the U direction of the bezier curve.
|
||
|
Setting this to a higher value produces smoother curves in rendering, and increases the
|
||
|
number of vertices the curve will get if converted into a mesh (e.g. for edge looping)
|
||
|
:param **kwargs:
|
||
|
Additional keyword arguments to be passed to the plotting function.
|
||
|
These are not required.
|
||
|
:return:
|
||
|
The new Blender object.
|
||
|
"""
|
||
|
|
||
|
# Create the Curve to populate with points.
|
||
![]() |
curve = bpy.data.curves.new("Parametric", type="CURVE")
|
||
|
curve.dimensions = "3D"
|
||
![]() |
curve.resolution_u = 30
|
||
|
|
||
|
# Add a new spline and give it the appropriate amount of points
|
||
![]() |
spline = curve.splines.new("BEZIER")
|
||
![]() |
spline.bezier_points.add(iterations)
|
||
|
|
||
![]() |
if use_cubic and iterations > 0:
|
||
![]() |
points = [
|
||
![]() |
function(((i - 3) / (3 * iterations)) * (max - min) + min, *args, **kwargs)
|
||
![]() |
for i in range((3 * (iterations + 2)) + 1)
|
||
|
]
|
||
|
|
||
|
# Convert intermediate points into handles
|
||
|
for i in range(iterations + 2):
|
||
|
a = points[(3 * i)]
|
||
|
b = points[(3 * i) + 1]
|
||
|
c = points[(3 * i) + 2]
|
||
|
d = points[(3 * i) + 3]
|
||
|
|
||
![]() |
bezier_bx, bezier_cx = derive_bezier_handles(a[0], b[0], c[0], d[0], 1 / 3, 2 / 3)
|
||
|
bezier_by, bezier_cy = derive_bezier_handles(a[1], b[1], c[1], d[1], 1 / 3, 2 / 3)
|
||
|
bezier_bz, bezier_cz = derive_bezier_handles(a[2], b[2], c[2], d[2], 1 / 3, 2 / 3)
|
||
![]() |
|
||
|
points[(3 * i) + 1] = (bezier_bx, bezier_by, bezier_bz)
|
||
|
points[(3 * i) + 2] = (bezier_cx, bezier_cy, bezier_cz)
|
||
|
|
||
|
# Set point coordinates and handles
|
||
|
for i in range(iterations + 1):
|
||
|
spline.bezier_points[i].co = points[3 * (i + 1)]
|
||
|
|
||
![]() |
spline.bezier_points[i].handle_left_type = "FREE"
|
||
![]() |
spline.bezier_points[i].handle_left = Vector(points[(3 * (i + 1)) - 1])
|
||
![]() |
|
||
![]() |
spline.bezier_points[i].handle_right_type = "FREE"
|
||
![]() |
spline.bezier_points[i].handle_right = Vector(points[(3 * (i + 1)) + 1])
|
||
![]() |
|
||
|
else:
|
||
![]() |
points = [function(i / iterations, *args, **kwargs) for i in range(iterations + 1)]
|
||
![]() |
|
||
|
# Set point coordinates, disable handles
|
||
|
for i in range(iterations + 1):
|
||
|
spline.bezier_points[i].co = points[i]
|
||
![]() |
spline.bezier_points[i].handle_left_type = "VECTOR"
|
||
|
spline.bezier_points[i].handle_right_type = "VECTOR"
|
||
![]() |
|
||
|
# Create the Blender object and link it to the scene
|
||
![]() |
curve_object = bpy.data.objects.new("Parametric", curve)
|
||
![]() |
context = bpy.context
|
||
|
scene = context.scene
|
||
![]() |
link_object = scene.collection.objects.link
|
||
![]() |
link_object(curve_object)
|
||
|
|
||
|
# Return the new object
|
||
|
return curve_object
|
||
|
|
||
|
|
||
|
def make_edge_loops(*objects):
|
||
|
"""
|
||
|
Turns a set of Curve objects into meshes, creates vertex groups,
|
||
|
and merges them into a set of edge loops.
|
||
|
|
||
|
:param *objects:
|
||
|
Positional arguments for each object to be converted and merged.
|
||
|
"""
|
||
![]() |
context = bpy.context
|
||
|
scene = context.scene
|
||
![]() |
|
||
|
mesh_objects = []
|
||
|
vertex_groups = []
|
||
|
|
||
|
# Convert all curves to meshes
|
||
|
for obj in objects:
|
||
|
# Unlink old object
|
||
|
unlink_object(obj)
|
||
|
|
||
|
# Convert curve to a mesh
|
||
|
if bpy.app.version >= (2, 80):
|
||
|
new_mesh = obj.to_mesh().copy()
|
||
|
else:
|
||
![]() |
new_mesh = obj.to_mesh(scene, False, "PREVIEW")
|
||
![]() |
|
||
|
# Store name and matrix, then fully delete the old object
|
||
|
name = obj.name
|
||
|
matrix = obj.matrix_world
|
||
|
bpy.data.objects.remove(obj)
|
||
|
|
||
|
# Attach the new mesh to a new object with the old name
|
||
|
new_object = bpy.data.objects.new(name, new_mesh)
|
||
|
new_object.matrix_world = matrix
|
||
|
|
||
|
# Make a new vertex group from all vertices on this mesh
|
||
|
vertex_group = new_object.vertex_groups.new(name=name)
|
||
![]() |
vertex_group.add(range(len(new_mesh.vertices)), 1.0, "ADD")
|
||
![]() |
|
||
|
vertex_groups.append(vertex_group)
|
||
|
|
||
|
# Link our new object
|
||
|
link_object(new_object)
|
||
|
|
||
|
# Add it to our list
|
||
|
mesh_objects.append(new_object)
|
||
|
|
||
|
# Make a new context
|
||
|
ctx = context.copy()
|
||
|
|
||
|
# Select our objects in the context
|
||
![]() |
ctx["active_object"] = mesh_objects[0]
|
||
|
ctx["selected_objects"] = mesh_objects
|
||
![]() |
if bpy.app.version >= (2, 80):
|
||
![]() |
ctx["selected_editable_objects"] = mesh_objects
|
||
![]() |
else:
|
||
![]() |
ctx["selected_editable_bases"] = [scene.object_bases[o.name] for o in mesh_objects]
|
||
![]() |
|
||
|
# Join them together
|
||
|
bpy.ops.object.join(ctx)
|