SignalFilters/Code_Python/filters.py

414 wiersze
13 KiB
Python

"""
Class for filter/smooth data.
Copyright (c) 2020 Gabriele Gilardi
References (both from John F. Ehlers):
[1] "Cycle Analytics for Traders: Advanced Technical Trading Concepts".
[2] "Signal Analysis, Filters And Trading Strategies".
X (n_samples, n_series) Dataset to filter
b (n_b, ) Numerator coefficients
a (n_a, ) Denominator coefficients
Y (n_samples, n_series) Filtered dataset
idx scalar First filtered element in Y
n_samples Number of data to filter
n_series Number of series to filter
nb Number of coefficients (numerator)
na Number of coefficients (denominator)
Notes:
- the filter is applied starting from index.
- non filtered data are set equal to the original input, i.e.
Y[0:idx-1,:] = X[0:idx-1,:]
Filters:
Generic b,a Generic case
SMA N Simple Moving Average
EMA N/alpha Exponential Moving Average
WMA N Weighted moving average
MSMA N Modified Simple Moving Average
MLSQ N Modified Least-Squares Quadratic (N=5,7,9,11)
ButterOrig P,N Butterworth original (N=2,3)
ButterMod P,N Butterworth modified (N=2,3)
SuperSmooth P,N Super smoother (N=2,3)
GaussLow P,N Gauss low pass (P>=2)
GaussHigh P,N Gauss high pass (P>=5)
BandPass P,delta Band-pass filter
BandStop P,delta Band-stop filter
ZEMA1 N/alpha,K,Vn Zero-lag EMA (type 1)
ZEMA2 N/alpha,K Zero-lag EMA (type 2)
InstTrend N/alpha Instantaneous trendline
SincFunction N Sinc function
Decycler P Decycler, 1-GaussHigh (P>=5)
DecyclerOsc P1,P2 Decycle oscillator, GH(P1) - GH(P2), (P1>=5)
N Order/smoothing factor/number of previous samples
alpha Damping term
P, P1, P2 Cut-off/critical period (50% power loss, -3 dB)
delta Band centered in P and in fraction
(30% of P => 0.3, = 0.3*P, if P = 12 => 0.3*12 = 4)
K Coefficient/gain
Vn Look back sample (for the momentum)
"""
import sys
import numpy as np
import utils as utl
def filter_data(X, b, a):
"""
Applies a filter with transfer response coefficients <a> and <b>.
"""
n_samples, n_series = X.shape
nb = len(b)
na = len(a)
idx = np.amax([0, nb - 1, na - 1])
Y = X.copy()
for i in range(idx, n_samples):
tmp = np.zeros(n_series)
for j in range(nb):
tmp = tmp + b[j] * X[i-j, :] # Numerator term
for j in range(1, na):
tmp = tmp - a[j] * Y[i-j, :] # Denominator term
Y[i, :] = tmp / a[0]
return Y, idx
class Filter:
def __init__(self, X):
"""
"""
self.X = np.asarray(X)
self.n_samples, self.n_series = X.shape
self.idx = 0
def Generic(self, b=1.0, a=1.0):
"""
Filter with generic transfer response coefficients <a> and <b>.
"""
b = np.asarray(b)
a = np.asarray(a)
Y, self.idx = filter_data(self.X, b, a)
return Y
def SMA(self, N=10):
"""
Simple moving average (?? order, FIR, ?? band).
"""
b = np.ones(N) / N
a = np.array([1.0])
Y, self.idx = filter_data(self.X, b, a)
return Y
def EMA(self, N=10, alpha=None):
"""
Exponential moving average (?? order, IIR, pass ??).
If not given, <alpha> is determined as equivalent to a N-SMA.
"""
if (alpha is None):
alpha = 2.0 / (N + 1.0)
b = np.array([alpha])
a = np.array([1.0, -(1.0 - alpha)])
Y, self.idx = filter_data(self.X, b, a)
return Y
def WMA(self, N=10):
"""
Weighted moving average (?? order, FIR, pass ??).
Example: N = 5 --> [5.0, 4.0, 3.0, 2.0, 1.0] / 15.0
"""
w = np.arange(N, 0, -1)
b = w / np.sum(w)
a = np.array([1.0])
Y, self.idx = filter_data(self.X, b, a)
return Y
def MSMA(self, N=10):
"""
Modified simple moving average (?? order, FIR, pass ??).
Example: N = 4 --> [0.5, 1.0, 1.0, 1.0, 0.5] / 4.0
"""
w = np.ones(N+1)
w[0] = 0.5
w[N] = 0.5
b = w / N
a = np.array([1.0])
Y, self.idx = filter_data(self.X, b, a)
return Y
def MLSQ(self, N=5):
"""
Modified simple moving average (?? order, FIR, pass ??).
Only N = 5, 7, 9, and 11 are implemented. If not returns the unfiltered
dataset.
"""
if (N == 5):
b = np.array([7.0, 24.0, 34.0, 24.0, 7.0]) / 96.0
elif (N == 7):
b = np.array([1.0, 6.0, 12.0, 14.0, 12.0, 6.0, 1.0]) / 52.0
elif (N == 9):
b = np.array([-1.0, 28.0, 78.0, 108.0, 118.0, 108.0, 78.0, 28.0,
-1.0]) / 544.0
elif (N == 11):
b = np.array([-11.0, 18.0, 88.0, 138.0, 168.0, 178.0, 168.0,
138.0, 88.0, 18.0, -11.0]) / 980.0
else:
Y = self.X.copy()
self.idx = 0
return Y
a = np.array([1.0])
Y, self.idx = filter_data(self.X, b, a)
return Y
def ButterOrig(self, N=2, P=10):
"""
Butterworth original version (?? order, IIR, pass ??).
Only N = 2 and 3 are implemented. If not returns the unfiltered dataset.
"""
if (N == 2):
beta = np.exp(-np.sqrt(2.0) * np.pi / P)
alpha = 2.0 * beta * np.cos(np.sqrt(2.0) * np.pi / P)
b = np.array([1.0, 2.0, 1.0]) * (1.0 - alpha + beta ** 2.0) / 4.0
a = np.array([1.0, -alpha, beta ** 2.0])
elif (N == 3):
beta = np.exp(-np.pi / P)
alpha = 2.0 * beta * np.cos(np.sqrt(3.0) * np.pi / P)
b = np.array([1.0, 3.0, 3.0, 1.0]) \
* (1.0 - alpha + beta ** 2.0) * (1.0 - beta ** 2.0) / 8.0
a = np.array([1.0, - (alpha + beta ** 2.0),
(1.0 + alpha) * beta ** 2.0, - beta ** 4.0])
else:
Y = self.X.copy()
self.idx = 0
return Y
Y, self.idx = filter_data(self.X, b, a)
return Y
def ButterMod(self, N=2, P=10):
"""
Butterworth modified version (?? order, IIR, pass ??).
Only N = 2 and 3 are implemented. If not returns the unfiltered dataset.
"""
if (N == 2):
beta = np.exp(-np.sqrt(2.0) * np.pi / P)
alpha = 2.0 * beta * np.cos(np.sqrt(2.0) * np.pi / P)
b = np.array([1.0 - alpha + beta ** 2.0])
a = np.array([1.0, -alpha, beta ** 2.0])
elif (N == 3):
beta = np.exp(-np.pi / P)
alpha = 2.0 * beta * np.cos(np.sqrt(3.0) * np.pi / P)
b = np.array([1.0 - alpha * (1.0 - beta ** 2.0) - beta ** 4.0])
a = np.array([1.0, - (alpha + beta ** 2.0),
(1.0 + alpha) * beta ** 2.0, - beta ** 4.0])
else:
Y = self.X.copy()
self.idx = 0
return Y
Y, self.idx = filter_data(self.X, b, a)
return Y
def SuperSmooth(self, N=2, P=10):
"""
SuperSmooth (?? order, IIR, pass ??).
Only N = 2 and 3 are implemented. If not returns the unfiltered dataset.
"""
if (N == 2):
beta = np.exp(-np.sqrt(2.0) * np.pi / P)
alpha = 2.0 * beta * np.cos(np.sqrt(2.0) * np.pi / P)
w = 1.0 - alpha + beta ** 2.0
b = np.array([w, w]) / 2.0
a = np.array([1.0, - alpha, beta ** 2.0])
elif (N == 3):
beta = np.exp(-np.pi / P)
alpha = 2.0 * beta * np.cos(1.738 * np.pi / P)
w = 1.0 - alpha * (1.0 - beta ** 2.0) - beta ** 4.0
b = np.array([w, w]) / 2.0
a = np.array([1.0, - (alpha + beta ** 2.0),
(1.0 + alpha) * beta ** 2.0, - beta ** 4.0])
else:
Y = self.X.copy()
self.idx = 0
return Y
Y, self.idx = filter_data(self.X, b, a)
return Y
def GaussLow(self, N=1, P=2):
"""
Gauss low pass (IIR, N-th order, low pass).
Must be P > 1. If not returns the unfiltered dataset.
"""
if (P < 2):
Y = self.X.copy()
self.idx = 0
return Y
A = 2.0 ** (1.0 / N) - 1.0
B = 4.0 * np.sin(np.pi / P) ** 2.0
C = 2.0 * (np.cos(2.0 * np.pi / P) - 1.0)
alpha = (-B + np.sqrt(B ** 2.0 - 4.0 * A * C)) / (2.0 * A)
b = np.array([alpha])
a = np.array([1.0, - (1.0 - alpha)])
Y = self.X.copy()
for i in range(N):
Y, self.idx = filter_data(Y, b, a)
return Y
def GaussHigh(self, N=1, P=5):
"""
Gauss high pass (IIR, Nth order, high pass).
Must be P > 4. If not returns the unfiltered dataset.
"""
if (P < 5):
Y = self.X.copy()
self.idx = 0
return Y
A = 2.0 ** (1.0 / N) * np.sin(np.pi / P) ** 2.0 - 1.0
B = 2.0 * (2.0 ** (1.0 / N) - 1.0) * (np.cos(2.0 * np.pi / P) - 1.0)
C = - B
alpha = (-B - np.sqrt(B ** 2.0 - 4.0 * A * C)) / (2.0 * A)
b = np.array([1.0 - alpha / 2.0, -(1.0 - alpha / 2.0)])
a = np.array([1.0, - (1.0 - alpha)])
Y = self.X - self.X[0, :]
for i in range(N):
Y, self.idx = filter_data(Y, b, a)
return Y
def BandPass(self, P=5, delta=0.3):
"""
Band-pass (type, order, IIR).
Example: delta = 0.3, P = 12
(30% of P => 0.3, = 0.3*P, if P = 12 => 0.3*12 = 4)
"""
beta = np.cos(2.0 * np.pi / P)
gamma = np.cos(4.0 * np.pi * delta / P)
alpha = 1.0 / gamma - np.sqrt(1.0 / gamma ** 2 - 1.0)
b = np.array([(1.0 - alpha) / 2.0, 0.0, - (1.0 - alpha) / 2.0])
a = np.array([1.0, - beta * (1.0 + alpha), alpha])
Y, self.idx = filter_data(self.X, b, a)
return Y
def BandStop(self, P=5, delta=0.3):
"""
band-stop (type, order, IIR)
Example: delta = 0.3, P = 12
(30% of P => 0.3, = 0.3*P, if P = 12 => 0.3*12 = 4)
"""
beta = np.cos(2.0 * np.pi / P)
gamma = np.cos(4.0 * np.pi * delta / P)
alpha = 1.0 / gamma - np.sqrt(1.0 / gamma ** 2 - 1.0)
b = np.array([(1.0 + alpha) / 2.0, - beta * (1.0 + alpha),
(1.0 + alpha) / 2.0])
a = np.array([1.0, -beta * (1.0 + alpha), alpha])
Y, self.idx = filter_data(self.X, b, a)
return Y
def ZEMA1(self, N=10, alpha=None, K=1.0, Vn=5):
"""
Zero lag Exponential Moving Average (type 1).
If not given, <alpha> is determined as equivalent to a N-SMA.
"""
if (alpha is None):
alpha = 2.0 / (N + 1.0)
b = np.zeros(Vn+1)
b[0] = alpha * (1.0 + K)
b[Vn] = - alpha * K
a = np.array([1.0, - (1.0 - alpha)])
Y, self.idx = filter_data(self.X, b, a)
return Y
def ZEMA2(self, N=10, alpha=None, K=1.0):
"""
Zero lag Exponential Moving Average (type 2).
If not given, <alpha> is determined as equivalent to a N-SMA.
"""
if (alpha is None):
alpha = 2.0 / (N + 1.0)
b = np.array([alpha * (1.0 + K)])
a = np.array([1.0, alpha * K - (1.0 - alpha)])
Y, self.idx = filter_data(self.X, b, a)
return Y
def InstTrend(self, N=10, alpha=None):
"""
Instantaneous Trendline (2nd order, IIR, low pass).
If not given, <alpha> is determined as equivalent to a N-SMA.
"""
if (alpha is None):
alpha = 2.0 / (N + 1.0)
b = np.array([alpha - alpha ** 2.0 / 4.0, alpha ** 2.0 / 2.0,
- alpha + 3.0 * alpha ** 2.0 / 4.0])
a = np.array([1.0, - 2.0 * (1.0 - alpha), (1.0 - alpha) ** 2.0])
Y, self.idx = filter_data(self.X, b, a)
return Y
def SincFunction(self, N=10, nel=10):
"""
Sinc function (order, FIR, pass).
(N > 1, cut off at 0.5/N)
"""
b = np.zeros(nel)
b[0] = 1.0 / N
k = np.arange(1, nel)
b[1:] = np.sin(np.pi * k / N) / (np.pi * k)
a = np.array([1.0])
Y, self.idx = filter_data(self.X, b, a)
return Y, b, a
def Decycler(self, P=10):
"""
Decycler (?? order, IIR, pass ??). Gauss,HP,1st,P
Built subtracting high pass Gauss filter from 1 (order 1)
Must be P > 4. If not returns the unfiltered dataset.
"""
if (P < 5):
Y = self.X.copy()
self.idx = 0
return Y
Y = self.X - self.GaussHigh(N=1, P=P)
return Y
def DecyclerOsc(self, P1=5, P2=10):
"""
DecyclerOsc (?? order 2, IIR, pass ??).
(Gauss, HP, 2nd order, Pmax - Gauss, HP, 2nd order, Pmin)
P1 = 1st cut off period, P2 = 2nd cut off period. Automatically fixed.
Must be P1, P2 > 4. If not returns the unfiltered dataset.
"""
P_low = np.amin([P1, P2])
P_high = np.amax([P1, P2])
if (P1 < 5):
Y = self.X.copy()
self.idx = 0
return Y
Y = self.GaussHigh(N=2, P=P_low) - self.GaussHigh(N=2, P=P_high)
return Y