""" Class for filter/smooth data. Copyright (c) 2020 Gabriele Gilardi References (both from John F. Ehlers): [1] "Cycle Analytics for Traders: Advanced Technical Trading Concepts". [2] "Signal Analysis, Filters And Trading Strategies". X (n_samples, n_series) Dataset to filter b (n_b, ) Numerator coefficients a (n_a, ) Denominator coefficients Y (n_samples, n_series) Filtered dataset idx scalar First filtered element in Y n_samples Number of data to filter n_series Number of series to filter nb Number of coefficients (numerator) na Number of coefficients (denominator) Notes: - the filter is applied starting from index. - non filtered data are set equal to the original input, i.e. Y[0:idx-1,:] = X[0:idx-1,:] Filters: Generic b,a Generic case SMA N Simple Moving Average EMA N/alpha Exponential Moving Average WMA N Weighted moving average MSMA N Modified Simple Moving Average MLSQ N Modified Least-Squares Quadratic (N=5,7,9,11) ButterOrig P,N Butterworth original (N=2,3) ButterMod P,N Butterworth modified (N=2,3) SuperSmooth P,N Super smoother (N=2,3) GaussLow P,N Gauss low pass (P>=2) GaussHigh P,N Gauss high pass (P>=5) BandPass P,delta Band-pass filter BandStop P,delta Band-stop filter ZEMA1 N/alpha,K,Vn Zero-lag EMA (type 1) ZEMA2 N/alpha,K Zero-lag EMA (type 2) InstTrend N/alpha Instantaneous trendline SincFunction N Sinc function Decycler P Decycler, 1-GaussHigh (P>=5) DecyclerOsc P1,P2 Decycle oscillator, GH(P1) - GH(P2), (P1>=5) N Order/smoothing factor/number of previous samples alpha Damping term P, P1, P2 Cut-off/critical period (50% power loss, -3 dB) delta Band centered in P and in fraction (30% of P => 0.3, = 0.3*P, if P = 12 => 0.3*12 = 4) K Coefficient/gain Vn Look back sample (for the momentum) """ import sys import numpy as np import utils as utl def filter_data(X, b, a): """ Applies a filter with transfer response coefficients and . """ n_samples, n_series = X.shape nb = len(b) na = len(a) idx = np.amax([0, nb - 1, na - 1]) Y = X.copy() for i in range(idx, n_samples): tmp = np.zeros(n_series) for j in range(nb): tmp = tmp + b[j] * X[i-j, :] # Numerator term for j in range(1, na): tmp = tmp - a[j] * Y[i-j, :] # Denominator term Y[i, :] = tmp / a[0] return Y, idx class Filter: def __init__(self, X): """ """ self.X = np.asarray(X) self.n_samples, self.n_series = X.shape self.idx = 0 def Generic(self, b=1.0, a=1.0): """ Filter with generic transfer response coefficients and . """ b = np.asarray(b) a = np.asarray(a) Y, self.idx = filter_data(self.X, b, a) return Y def SMA(self, N=10): """ Simple moving average (?? order, FIR, ?? band). """ b = np.ones(N) / N a = np.array([1.0]) Y, self.idx = filter_data(self.X, b, a) return Y def EMA(self, N=10, alpha=None): """ Exponential moving average (?? order, IIR, pass ??). If not given, is determined as equivalent to a N-SMA. """ if (alpha is None): alpha = 2.0 / (N + 1.0) b = np.array([alpha]) a = np.array([1.0, -(1.0 - alpha)]) Y, self.idx = filter_data(self.X, b, a) return Y def WMA(self, N=10): """ Weighted moving average (?? order, FIR, pass ??). Example: N = 5 --> [5.0, 4.0, 3.0, 2.0, 1.0] / 15.0 """ w = np.arange(N, 0, -1) b = w / np.sum(w) a = np.array([1.0]) Y, self.idx = filter_data(self.X, b, a) return Y def MSMA(self, N=10): """ Modified simple moving average (?? order, FIR, pass ??). Example: N = 4 --> [0.5, 1.0, 1.0, 1.0, 0.5] / 4.0 """ w = np.ones(N+1) w[0] = 0.5 w[N] = 0.5 b = w / N a = np.array([1.0]) Y, self.idx = filter_data(self.X, b, a) return Y def MLSQ(self, N=5): """ Modified simple moving average (?? order, FIR, pass ??). Only N = 5, 7, 9, and 11 are implemented. If not returns the unfiltered dataset. """ if (N == 5): b = np.array([7.0, 24.0, 34.0, 24.0, 7.0]) / 96.0 elif (N == 7): b = np.array([1.0, 6.0, 12.0, 14.0, 12.0, 6.0, 1.0]) / 52.0 elif (N == 9): b = np.array([-1.0, 28.0, 78.0, 108.0, 118.0, 108.0, 78.0, 28.0, -1.0]) / 544.0 elif (N == 11): b = np.array([-11.0, 18.0, 88.0, 138.0, 168.0, 178.0, 168.0, 138.0, 88.0, 18.0, -11.0]) / 980.0 else: Y = self.X.copy() self.idx = 0 return Y a = np.array([1.0]) Y, self.idx = filter_data(self.X, b, a) return Y def ButterOrig(self, N=2, P=10): """ Butterworth original version (?? order, IIR, pass ??). Only N = 2 and 3 are implemented. If not returns the unfiltered dataset. """ if (N == 2): beta = np.exp(-np.sqrt(2.0) * np.pi / P) alpha = 2.0 * beta * np.cos(np.sqrt(2.0) * np.pi / P) b = np.array([1.0, 2.0, 1.0]) * (1.0 - alpha + beta ** 2.0) / 4.0 a = np.array([1.0, -alpha, beta ** 2.0]) elif (N == 3): beta = np.exp(-np.pi / P) alpha = 2.0 * beta * np.cos(np.sqrt(3.0) * np.pi / P) b = np.array([1.0, 3.0, 3.0, 1.0]) \ * (1.0 - alpha + beta ** 2.0) * (1.0 - beta ** 2.0) / 8.0 a = np.array([1.0, - (alpha + beta ** 2.0), (1.0 + alpha) * beta ** 2.0, - beta ** 4.0]) else: Y = self.X.copy() self.idx = 0 return Y Y, self.idx = filter_data(self.X, b, a) return Y def ButterMod(self, N=2, P=10): """ Butterworth modified version (?? order, IIR, pass ??). Only N = 2 and 3 are implemented. If not returns the unfiltered dataset. """ if (N == 2): beta = np.exp(-np.sqrt(2.0) * np.pi / P) alpha = 2.0 * beta * np.cos(np.sqrt(2.0) * np.pi / P) b = np.array([1.0 - alpha + beta ** 2.0]) a = np.array([1.0, -alpha, beta ** 2.0]) elif (N == 3): beta = np.exp(-np.pi / P) alpha = 2.0 * beta * np.cos(np.sqrt(3.0) * np.pi / P) b = np.array([1.0 - alpha * (1.0 - beta ** 2.0) - beta ** 4.0]) a = np.array([1.0, - (alpha + beta ** 2.0), (1.0 + alpha) * beta ** 2.0, - beta ** 4.0]) else: Y = self.X.copy() self.idx = 0 return Y Y, self.idx = filter_data(self.X, b, a) return Y def SuperSmooth(self, N=2, P=10): """ SuperSmooth (?? order, IIR, pass ??). Only N = 2 and 3 are implemented. If not returns the unfiltered dataset. """ if (N == 2): beta = np.exp(-np.sqrt(2.0) * np.pi / P) alpha = 2.0 * beta * np.cos(np.sqrt(2.0) * np.pi / P) w = 1.0 - alpha + beta ** 2.0 b = np.array([w, w]) / 2.0 a = np.array([1.0, - alpha, beta ** 2.0]) elif (N == 3): beta = np.exp(-np.pi / P) alpha = 2.0 * beta * np.cos(1.738 * np.pi / P) w = 1.0 - alpha * (1.0 - beta ** 2.0) - beta ** 4.0 b = np.array([w, w]) / 2.0 a = np.array([1.0, - (alpha + beta ** 2.0), (1.0 + alpha) * beta ** 2.0, - beta ** 4.0]) else: Y = self.X.copy() self.idx = 0 return Y Y, self.idx = filter_data(self.X, b, a) return Y def GaussLow(self, N=1, P=2): """ Gauss low pass (IIR, N-th order, low pass). Must be P > 1. If not returns the unfiltered dataset. """ if (P < 2): Y = self.X.copy() self.idx = 0 return Y A = 2.0 ** (1.0 / N) - 1.0 B = 4.0 * np.sin(np.pi / P) ** 2.0 C = 2.0 * (np.cos(2.0 * np.pi / P) - 1.0) alpha = (-B + np.sqrt(B ** 2.0 - 4.0 * A * C)) / (2.0 * A) b = np.array([alpha]) a = np.array([1.0, - (1.0 - alpha)]) Y = self.X.copy() for i in range(N): Y, self.idx = filter_data(Y, b, a) return Y def GaussHigh(self, N=1, P=5): """ Gauss high pass (IIR, Nth order, high pass). Must be P > 4. If not returns the unfiltered dataset. """ if (P < 5): Y = self.X.copy() self.idx = 0 return Y A = 2.0 ** (1.0 / N) * np.sin(np.pi / P) ** 2.0 - 1.0 B = 2.0 * (2.0 ** (1.0 / N) - 1.0) * (np.cos(2.0 * np.pi / P) - 1.0) C = - B alpha = (-B - np.sqrt(B ** 2.0 - 4.0 * A * C)) / (2.0 * A) b = np.array([1.0 - alpha / 2.0, -(1.0 - alpha / 2.0)]) a = np.array([1.0, - (1.0 - alpha)]) Y = self.X - self.X[0, :] for i in range(N): Y, self.idx = filter_data(Y, b, a) return Y def BandPass(self, P=5, delta=0.3): """ Band-pass (type, order, IIR). Example: delta = 0.3, P = 12 (30% of P => 0.3, = 0.3*P, if P = 12 => 0.3*12 = 4) """ beta = np.cos(2.0 * np.pi / P) gamma = np.cos(4.0 * np.pi * delta / P) alpha = 1.0 / gamma - np.sqrt(1.0 / gamma ** 2 - 1.0) b = np.array([(1.0 - alpha) / 2.0, 0.0, - (1.0 - alpha) / 2.0]) a = np.array([1.0, - beta * (1.0 + alpha), alpha]) Y, self.idx = filter_data(self.X, b, a) return Y def BandStop(self, P=5, delta=0.3): """ band-stop (type, order, IIR) Example: delta = 0.3, P = 12 (30% of P => 0.3, = 0.3*P, if P = 12 => 0.3*12 = 4) """ beta = np.cos(2.0 * np.pi / P) gamma = np.cos(4.0 * np.pi * delta / P) alpha = 1.0 / gamma - np.sqrt(1.0 / gamma ** 2 - 1.0) b = np.array([(1.0 + alpha) / 2.0, - beta * (1.0 + alpha), (1.0 + alpha) / 2.0]) a = np.array([1.0, -beta * (1.0 + alpha), alpha]) Y, self.idx = filter_data(self.X, b, a) return Y def ZEMA1(self, N=10, alpha=None, K=1.0, Vn=5): """ Zero lag Exponential Moving Average (type 1). If not given, is determined as equivalent to a N-SMA. """ if (alpha is None): alpha = 2.0 / (N + 1.0) b = np.zeros(Vn+1) b[0] = alpha * (1.0 + K) b[Vn] = - alpha * K a = np.array([1.0, - (1.0 - alpha)]) Y, self.idx = filter_data(self.X, b, a) return Y def ZEMA2(self, N=10, alpha=None, K=1.0): """ Zero lag Exponential Moving Average (type 2). If not given, is determined as equivalent to a N-SMA. """ if (alpha is None): alpha = 2.0 / (N + 1.0) b = np.array([alpha * (1.0 + K)]) a = np.array([1.0, alpha * K - (1.0 - alpha)]) Y, self.idx = filter_data(self.X, b, a) return Y def InstTrend(self, N=10, alpha=None): """ Instantaneous Trendline (2nd order, IIR, low pass). If not given, is determined as equivalent to a N-SMA. """ if (alpha is None): alpha = 2.0 / (N + 1.0) b = np.array([alpha - alpha ** 2.0 / 4.0, alpha ** 2.0 / 2.0, - alpha + 3.0 * alpha ** 2.0 / 4.0]) a = np.array([1.0, - 2.0 * (1.0 - alpha), (1.0 - alpha) ** 2.0]) Y, self.idx = filter_data(self.X, b, a) return Y def SincFunction(self, N=10, nel=10): """ Sinc function (order, FIR, pass). (N > 1, cut off at 0.5/N) """ b = np.zeros(nel) b[0] = 1.0 / N k = np.arange(1, nel) b[1:] = np.sin(np.pi * k / N) / (np.pi * k) a = np.array([1.0]) Y, self.idx = filter_data(self.X, b, a) return Y, b, a def Decycler(self, P=10): """ Decycler (?? order, IIR, pass ??). Gauss,HP,1st,P Built subtracting high pass Gauss filter from 1 (order 1) Must be P > 4. If not returns the unfiltered dataset. """ if (P < 5): Y = self.X.copy() self.idx = 0 return Y Y = self.X - self.GaussHigh(N=1, P=P) return Y def DecyclerOsc(self, P1=5, P2=10): """ DecyclerOsc (?? order 2, IIR, pass ??). (Gauss, HP, 2nd order, Pmax - Gauss, HP, 2nd order, Pmin) P1 = 1st cut off period, P2 = 2nd cut off period. Automatically fixed. Must be P1, P2 > 4. If not returns the unfiltered dataset. """ P_low = np.amin([P1, P2]) P_high = np.amax([P1, P2]) if (P1 < 5): Y = self.X.copy() self.idx = 0 return Y Y = self.GaussHigh(N=2, P=P_low) - self.GaussHigh(N=2, P=P_high) return Y