RadioLib/examples/NonArduino/Pico/PicoHal.h

143 wiersze
3.3 KiB
C++

#ifndef PICO_HAL_H
#define PICO_HAL_H
// include RadioLib
#include <RadioLib.h>
// include the necessary Pico libraries
#include <pico/stdlib.h>
#include "hardware/spi.h"
#include "hardware/timer.h"
// create a new Raspberry Pi Pico hardware abstraction
// layer using the Pico SDK
// the HAL must inherit from the base RadioLibHal class
// and implement all of its virtual methods
class PicoHal : public RadioLibHal {
public:
PicoHal(spi_inst_t *spiChannel, uint32_t misoPin, uint32_t mosiPin, uint32_t sckPin, uint32_t spiSpeed = 500 * 1000)
: RadioLibHal(GPIO_IN, GPIO_OUT, 0, 1, GPIO_IRQ_EDGE_RISE, GPIO_IRQ_EDGE_FALL),
_spiChannel(spiChannel),
_spiSpeed(spiSpeed),
_misoPin(misoPin),
_mosiPin(mosiPin),
_sckPin(sckPin) {
}
void init() override {
stdio_init_all();
spiBegin();
}
void term() override {
spiEnd();
}
// GPIO-related methods (pinMode, digitalWrite etc.) should check
// RADIOLIB_NC as an alias for non-connected pins
void pinMode(uint32_t pin, uint32_t mode) override {
if (pin == RADIOLIB_NC) {
return;
}
gpio_init(pin);
gpio_set_dir(pin, mode);
}
void digitalWrite(uint32_t pin, uint32_t value) override {
if (pin == RADIOLIB_NC) {
return;
}
gpio_put(pin, (bool)value);
}
uint32_t digitalRead(uint32_t pin) override {
if (pin == RADIOLIB_NC) {
return 0;
}
return gpio_get(pin);
}
void attachInterrupt(uint32_t interruptNum, void (*interruptCb)(void), uint32_t mode) override {
if (interruptNum == RADIOLIB_NC) {
return;
}
gpio_set_irq_enabled_with_callback(interruptNum, GPIO_IRQ_EDGE_RISE | GPIO_IRQ_EDGE_FALL, true, (gpio_irq_callback_t)interruptCb);
}
void detachInterrupt(uint32_t interruptNum) override {
if (interruptNum == RADIOLIB_NC) {
return;
}
gpio_set_irq_enabled_with_callback(interruptNum, GPIO_IRQ_EDGE_RISE | GPIO_IRQ_EDGE_FALL, false, NULL);
}
void delay(unsigned long ms) override {
sleep_ms(ms);
}
void delayMicroseconds(unsigned long us) override {
sleep_us(us);
}
unsigned long millis() override {
return to_ms_since_boot(get_absolute_time());
}
unsigned long micros() override {
return to_us_since_boot(get_absolute_time());
}
long pulseIn(uint32_t pin, uint32_t state, unsigned long timeout) override {
if (pin == RADIOLIB_NC) {
return 0;
}
this->pinMode(pin, GPIO_IN);
uint32_t start = this->micros();
uint32_t curtick = this->micros();
while (this->digitalRead(pin) == state) {
if ((this->micros() - curtick) > timeout) {
return 0;
}
}
return (this->micros() - start);
}
void spiBegin() {
spi_init(_spiChannel, _spiSpeed);
spi_set_format(_spiChannel, 8, SPI_CPOL_0, SPI_CPHA_0, SPI_MSB_FIRST);
gpio_set_function(_sckPin, GPIO_FUNC_SPI);
gpio_set_function(_mosiPin, GPIO_FUNC_SPI);
gpio_set_function(_misoPin, GPIO_FUNC_SPI);
}
void spiBeginTransaction() {}
void spiTransfer(uint8_t *out, size_t len, uint8_t *in) {
spi_write_read_blocking(_spiChannel, out, in, len);
}
void spiEndTransaction() {}
void spiEnd() {
spi_deinit(_spiChannel);
}
private:
// the HAL can contain any additional private members
spi_inst_t *_spiChannel;
uint32_t _spiSpeed;
uint32_t _misoPin;
uint32_t _mosiPin;
uint32_t _sckPin;
};
#endif