RadioLib/src/utils/FEC.cpp

294 wiersze
6.4 KiB
C++

#include "FEC.h"
#include <string.h>
RadioLibBCH::RadioLibBCH() {
}
/*
BCH Encoder based on https://www.codeproject.com/articles/13189/pocsag-encoder
Significantly cleaned up and slightly fixed.
*/
void RadioLibBCH::begin(uint8_t n, uint8_t k, uint32_t poly) {
this->n = n;
this->k = k;
this->poly = poly;
#if !RADIOLIB_STATIC_ONLY
this->alphaTo = new int32_t[n + 1];
this->indexOf = new int32_t[n + 1];
this->generator = new int32_t[n - k + 1];
#endif
// find the maximum power of the polynomial
for(this->m = 0; this->m < 31; this->m++) {
if((poly >> this->m) == 1) {
break;
}
}
/*
* generate GF(2**m) from the irreducible polynomial p(X) in p[0]..p[m]
* lookup tables: index->polynomial form this->alphaTo[] contains j=alpha**i;
* polynomial form -> index form this->indexOf[j=alpha**i] = i alpha=2 is the
* primitive element of GF(2**m)
*/
int32_t mask = 1;
this->alphaTo[this->m] = 0;
for(uint8_t i = 0; i < this->m; i++) {
this->alphaTo[i] = mask;
this->indexOf[this->alphaTo[i]] = i;
if(this->poly & ((uint32_t)0x01 << i)) {
this->alphaTo[this->m] ^= mask;
}
mask <<= 1;
}
this->indexOf[this->alphaTo[this->m]] = this->m;
mask >>= 1;
for(uint8_t i = this->m + 1; i < this->n; i++) {
if(this->alphaTo[i - 1] >= mask) {
this->alphaTo[i] = this->alphaTo[this->m] ^ ((this->alphaTo[i - 1] ^ mask) << 1);
} else {
this->alphaTo[i] = this->alphaTo[i - 1] << 1;
}
this->indexOf[this->alphaTo[i]] = i;
}
this->indexOf[0] = -1;
/*
* Compute generator polynomial of BCH code of length = 31, redundancy = 10
* (OK, this is not very efficient, but we only do it once, right? :)
*/
int32_t ii = 0;
int32_t jj = 1;
int32_t ll = 0;
int32_t kaux = 0;
bool test = false;
int32_t aux = 0;
int32_t cycle[15][6] = { { 0 } };
int32_t size[15] = { 0 };
// Generate cycle sets modulo 31
cycle[0][0] = 0; size[0] = 1;
cycle[1][0] = 1; size[1] = 1;
do {
// Generate the jj-th cycle set
ii = 0;
do {
ii++;
cycle[jj][ii] = (cycle[jj][ii - 1] * 2) % this->n;
size[jj]++;
aux = (cycle[jj][ii] * 2) % this->n;
} while(aux != cycle[jj][0]);
// Next cycle set representative
ll = 0;
do {
ll++;
test = false;
for(ii = 1; ((ii <= jj) && !test); ii++) {
// Examine previous cycle sets
for(kaux = 0; ((kaux < size[ii]) && !test); kaux++) {
test = (ll == cycle[ii][kaux]);
}
}
} while(test && (ll < (this->n - 1)));
if(!test) {
jj++; // next cycle set index
cycle[jj][0] = ll;
size[jj] = 1;
}
} while(ll < (this->n - 1));
// Search for roots 1, 2, ..., m-1 in cycle sets
int32_t rdncy = 0;
#if RADIOLIB_STATIC_ONLY
int32_t min[RADIOLIB_BCH_MAX_N - RADIOLIB_BCH_MAX_K + 1];
#else
int32_t* min = new int32_t[this->n - this->k + 1];
#endif
kaux = 0;
for(ii = 1; ii <= jj; ii++) {
min[kaux] = 0;
for(jj = 0; jj < size[ii]; jj++) {
for(uint8_t root = 1; root < this->m; root++) {
if(root == cycle[ii][jj]) {
min[kaux] = ii;
}
}
}
if(min[kaux]) {
rdncy += size[min[kaux]];
kaux++;
}
}
int32_t noterms = kaux;
#if RADIOLIB_STATIC_ONLY
int32_t zeros[RADIOLIB_BCH_MAX_N - RADIOLIB_BCH_MAX_K + 1];
#else
int32_t* zeros = new int32_t[this->n - this->k + 1];
#endif
kaux = 1;
for(ii = 0; ii < noterms; ii++) {
for(jj = 0; jj < size[min[ii]]; jj++) {
zeros[kaux] = cycle[min[ii]][jj];
kaux++;
}
}
#if !RADIOLIB_STATIC_ONLY
delete[] min;
#endif
// Compute generator polynomial
this->generator[0] = this->alphaTo[zeros[1]];
this->generator[1] = 1; // g(x) = (X + zeros[1]) initially
for(ii = 2; ii <= rdncy; ii++) {
this->generator[ii] = 1;
for(jj = ii - 1; jj > 0; jj--) {
if(this->generator[jj] != 0) {
this->generator[jj] = this->generator[jj - 1] ^ this->alphaTo[(this->indexOf[this->generator[jj]] + zeros[ii]) % this->n];
} else {
this->generator[jj] = this->generator[jj - 1];
}
}
this->generator[0] = this->alphaTo[(this->indexOf[this->generator[0]] + zeros[ii]) % this->n];
}
#if !RADIOLIB_STATIC_ONLY
delete[] zeros;
#endif
}
/*
BCH Encoder based on https://www.codeproject.com/articles/13189/pocsag-encoder
Significantly cleaned up and slightly fixed.
*/
uint32_t RadioLibBCH::encode(uint32_t dataword) {
// we only use the "k" most significant bits
#if RADIOLIB_STATIC_ONLY
int32_t data[RADIOLIB_BCH_MAX_K];
#else
int32_t* data = new int32_t[this->k];
#endif
int32_t j1 = 0;
for(int32_t i = this->n; i > (this->n - this->k); i--) {
if(dataword & ((uint32_t)1<<i)) {
data[j1++]=1;
} else {
data[j1++]=0;
}
}
// reset the M(x)+r array elements
#if RADIOLIB_STATIC_ONLY
int32_t Mr[RADIOLIB_BCH_MAX_N];
#else
int32_t* Mr = new int32_t[this->n];
#endif
memset(Mr, 0x00, this->n*sizeof(int32_t));
// copy the contents of data into Mr and add the zeros
memcpy(Mr, data, this->k*sizeof(int32_t));
int32_t j = 0;
int32_t start = 0;
int32_t end = this->n - this->k;
while(end < this->n) {
for(int32_t i = end; i > start-2; --i) {
if(Mr[start]) {
Mr[i] ^= this->generator[j];
++j;
} else {
++start;
j = 0;
end = start + this->n - this->k;
break;
}
}
}
#if RADIOLIB_STATIC_ONLY
int32_t bb[RADIOLIB_BCH_MAX_N - RADIOLIB_BCH_MAX_K + 1];
#else
int32_t* bb = new int32_t[this->n - this->k + 1];
#endif
j = 0;
for(int32_t i = start; i < end; ++i) {
bb[j] = Mr[i];
++j;
}
#if !RADIOLIB_STATIC_ONLY
delete[] Mr;
#endif
int32_t iEvenParity = 0;
#if RADIOLIB_STATIC_ONLY
int32_t recd[RADIOLIB_BCH_MAX_N + 1];
#else
int32_t* recd = new int32_t[this->n + 1];
#endif
for(uint8_t i = 0; i < this->k; i++) {
recd[this->n - i] = data[i];
if(data[i] == 1) {
iEvenParity++;
}
}
#if !RADIOLIB_STATIC_ONLY
delete[] data;
#endif
for(uint8_t i = 0; i < this->n - this->k + 1; i++) {
recd[this->n - this->k - i] = bb[i];
if(bb[i] == 1) {
iEvenParity++;
}
}
#if !RADIOLIB_STATIC_ONLY
delete[] bb;
#endif
if((iEvenParity % 2) == 0) {
recd[0] = 0;
} else {
recd[0] = 1;
}
int32_t res = 0;
for(int32_t i = 0; i < this->n + 1; i++) {
if(recd[i]) {
res |= ((uint32_t)1<<i);
}
}
#if !RADIOLIB_STATIC_ONLY
delete[] recd;
#endif
return(res);
}
RadioLibBCH RadioLibBCHInstance;