RadioLib/src/Module.cpp

466 wiersze
12 KiB
C++

#include "Module.h"
#if defined(RADIOLIB_BUILD_ARDUINO)
// we need this to emulate tone() on mbed Arduino boards
#if defined(RADIOLIB_MBED_TONE_OVERRIDE)
#include "mbed.h"
mbed::PwmOut *pwmPin = NULL;
#endif
Module::Module(RADIOLIB_PIN_TYPE cs, RADIOLIB_PIN_TYPE irq, RADIOLIB_PIN_TYPE rst, RADIOLIB_PIN_TYPE gpio):
_cs(cs),
_irq(irq),
_rst(rst),
_gpio(gpio)
{
_spi = &RADIOLIB_DEFAULT_SPI;
_initInterface = true;
// this is Arduino build, pre-set callbacks
setCb_pinMode(::pinMode);
setCb_digitalRead(::digitalRead);
setCb_digitalWrite(::digitalWrite);
#if !defined(RADIOLIB_TONE_UNSUPPORTED)
setCb_tone(::tone);
setCb_noTone(::noTone);
#endif
setCb_attachInterrupt(::attachInterrupt);
setCb_detachInterrupt(::detachInterrupt);
#if !defined(RADIOLIB_YIELD_UNSUPPORTED)
setCb_yield(::yield);
#endif
setCb_delay(::delay);
setCb_delayMicroseconds(::delayMicroseconds);
setCb_millis(::millis);
setCb_micros(::micros);
setCb_SPIbegin(&Module::SPIbegin);
setCb_SPIbeginTransaction(&Module::beginTransaction);
setCb_SPItransfer(&Module::transfer);
setCb_SPIendTransaction(&Module::endTransaction);
setCb_SPIend(&Module::end);
}
Module::Module(RADIOLIB_PIN_TYPE cs, RADIOLIB_PIN_TYPE irq, RADIOLIB_PIN_TYPE rst, RADIOLIB_PIN_TYPE gpio, SPIClass& spi, SPISettings spiSettings):
_cs(cs),
_irq(irq),
_rst(rst),
_gpio(gpio),
_spiSettings(spiSettings)
{
_spi = &spi;
_initInterface = false;
// this is Arduino build, pre-set callbacks
setCb_pinMode(::pinMode);
setCb_digitalRead(::digitalRead);
setCb_digitalWrite(::digitalWrite);
#if !defined(RADIOLIB_TONE_UNSUPPORTED)
setCb_tone(::tone);
setCb_noTone(::noTone);
#endif
setCb_attachInterrupt(::attachInterrupt);
setCb_detachInterrupt(::detachInterrupt);
#if !defined(RADIOLIB_YIELD_UNSUPPORTED)
setCb_yield(::yield);
#endif
setCb_delay(::delay);
setCb_delayMicroseconds(::delayMicroseconds);
setCb_millis(::millis);
setCb_micros(::micros);
setCb_SPIbegin(&Module::SPIbegin);
setCb_SPIbeginTransaction(&Module::beginTransaction);
setCb_SPItransfer(&Module::transfer);
setCb_SPIendTransaction(&Module::endTransaction);
setCb_SPIend(&Module::end);
}
#else
Module::Module(RADIOLIB_PIN_TYPE cs, RADIOLIB_PIN_TYPE irq, RADIOLIB_PIN_TYPE rst, RADIOLIB_PIN_TYPE gpio):
_cs(cs),
_irq(irq),
_rst(rst),
_gpio(gpio)
{
// not an Arduino build, it's up to the user to set all callbacks
}
#endif
Module::Module(const Module& mod) {
*this = mod;
}
Module& Module::operator=(const Module& mod) {
this->SPIreadCommand = mod.SPIreadCommand;
this->SPIwriteCommand = mod.SPIwriteCommand;
this->_cs = mod.getCs();
this->_irq = mod.getIrq();
this->_rst = mod.getRst();
this->_gpio = mod.getGpio();
return(*this);
}
void Module::init() {
this->pinMode(_cs, OUTPUT);
this->digitalWrite(_cs, HIGH);
if(_initInterface) {
(this->*cb_SPIbegin)();
}
}
void Module::term() {
// stop hardware interfaces (if they were initialized by the library)
if(!_initInterface) {
return;
}
if(_spi != nullptr) {
this->SPIend();
}
}
int16_t Module::SPIgetRegValue(uint8_t reg, uint8_t msb, uint8_t lsb) {
if((msb > 7) || (lsb > 7) || (lsb > msb)) {
return(RADIOLIB_ERR_INVALID_BIT_RANGE);
}
uint8_t rawValue = SPIreadRegister(reg);
uint8_t maskedValue = rawValue & ((0b11111111 << lsb) & (0b11111111 >> (7 - msb)));
return(maskedValue);
}
int16_t Module::SPIsetRegValue(uint8_t reg, uint8_t value, uint8_t msb, uint8_t lsb, uint8_t checkInterval, uint8_t checkMask) {
if((msb > 7) || (lsb > 7) || (lsb > msb)) {
return(RADIOLIB_ERR_INVALID_BIT_RANGE);
}
uint8_t currentValue = SPIreadRegister(reg);
uint8_t mask = ~((0b11111111 << (msb + 1)) | (0b11111111 >> (8 - lsb)));
uint8_t newValue = (currentValue & ~mask) | (value & mask);
SPIwriteRegister(reg, newValue);
#if defined(RADIOLIB_SPI_PARANOID)
// check register value each millisecond until check interval is reached
// some registers need a bit of time to process the change (e.g. SX127X_REG_OP_MODE)
uint32_t start = this->micros();
uint8_t readValue = 0x00;
while(this->micros() - start < (checkInterval * 1000)) {
readValue = SPIreadRegister(reg);
if((readValue & checkMask) == (newValue & checkMask)) {
// check passed, we can stop the loop
return(RADIOLIB_ERR_NONE);
}
}
// check failed, print debug info
RADIOLIB_DEBUG_PRINTLN();
RADIOLIB_DEBUG_PRINT(F("address:\t0x"));
RADIOLIB_DEBUG_PRINTLN(reg, HEX);
RADIOLIB_DEBUG_PRINT(F("bits:\t\t"));
RADIOLIB_DEBUG_PRINT(msb);
RADIOLIB_DEBUG_PRINT(' ');
RADIOLIB_DEBUG_PRINTLN(lsb);
RADIOLIB_DEBUG_PRINT(F("value:\t\t0b"));
RADIOLIB_DEBUG_PRINTLN(value, BIN);
RADIOLIB_DEBUG_PRINT(F("current:\t0b"));
RADIOLIB_DEBUG_PRINTLN(currentValue, BIN);
RADIOLIB_DEBUG_PRINT(F("mask:\t\t0b"));
RADIOLIB_DEBUG_PRINTLN(mask, BIN);
RADIOLIB_DEBUG_PRINT(F("new:\t\t0b"));
RADIOLIB_DEBUG_PRINTLN(newValue, BIN);
RADIOLIB_DEBUG_PRINT(F("read:\t\t0b"));
RADIOLIB_DEBUG_PRINTLN(readValue, BIN);
RADIOLIB_DEBUG_PRINTLN();
return(RADIOLIB_ERR_SPI_WRITE_FAILED);
#else
return(RADIOLIB_ERR_NONE);
#endif
}
void Module::SPIreadRegisterBurst(uint8_t reg, uint8_t numBytes, uint8_t* inBytes) {
SPItransfer(SPIreadCommand, reg, NULL, inBytes, numBytes);
}
uint8_t Module::SPIreadRegister(uint8_t reg) {
uint8_t resp = 0;
SPItransfer(SPIreadCommand, reg, NULL, &resp, 1);
return(resp);
}
void Module::SPIwriteRegisterBurst(uint8_t reg, uint8_t* data, uint8_t numBytes) {
SPItransfer(SPIwriteCommand, reg, data, NULL, numBytes);
}
void Module::SPIwriteRegister(uint8_t reg, uint8_t data) {
SPItransfer(SPIwriteCommand, reg, &data, NULL, 1);
}
void Module::SPItransfer(uint8_t cmd, uint8_t reg, uint8_t* dataOut, uint8_t* dataIn, uint8_t numBytes) {
// start SPI transaction
this->SPIbeginTransaction();
// pull CS low
this->digitalWrite(_cs, LOW);
// send SPI register address with access command
this->SPItransfer(reg | cmd);
#if defined(RADIOLIB_VERBOSE)
if(cmd == SPIwriteCommand) {
RADIOLIB_VERBOSE_PRINT('W');
} else if(cmd == SPIreadCommand) {
RADIOLIB_VERBOSE_PRINT('R');
}
RADIOLIB_VERBOSE_PRINT('\t')
RADIOLIB_VERBOSE_PRINT(reg, HEX);
RADIOLIB_VERBOSE_PRINT('\t');
#endif
// send data or get response
if(cmd == SPIwriteCommand) {
if(dataOut != NULL) {
for(size_t n = 0; n < numBytes; n++) {
this->SPItransfer(dataOut[n]);
RADIOLIB_VERBOSE_PRINT(dataOut[n], HEX);
RADIOLIB_VERBOSE_PRINT('\t');
}
}
} else if (cmd == SPIreadCommand) {
if(dataIn != NULL) {
for(size_t n = 0; n < numBytes; n++) {
dataIn[n] = this->SPItransfer(0x00);
RADIOLIB_VERBOSE_PRINT(dataIn[n], HEX);
RADIOLIB_VERBOSE_PRINT('\t');
}
}
}
RADIOLIB_VERBOSE_PRINTLN();
// release CS
this->digitalWrite(_cs, HIGH);
// end SPI transaction
this->SPIendTransaction();
}
void Module::pinMode(RADIOLIB_PIN_TYPE pin, RADIOLIB_PIN_MODE mode) {
if((pin == RADIOLIB_NC) || (cb_pinMode == nullptr)) {
return;
}
cb_pinMode(pin, mode);
}
void Module::digitalWrite(RADIOLIB_PIN_TYPE pin, RADIOLIB_PIN_STATUS value) {
if((pin == RADIOLIB_NC) || (cb_digitalWrite == nullptr)) {
return;
}
cb_digitalWrite(pin, value);
}
RADIOLIB_PIN_STATUS Module::digitalRead(RADIOLIB_PIN_TYPE pin) {
if((pin == RADIOLIB_NC) || (cb_digitalRead == nullptr)) {
return((RADIOLIB_PIN_STATUS)0);
}
return(cb_digitalRead(pin));
}
void Module::tone(RADIOLIB_PIN_TYPE pin, uint16_t value, uint32_t duration) {
#if !defined(RADIOLIB_TONE_UNSUPPORTED)
if((pin == RADIOLIB_NC) || (cb_tone == nullptr)) {
return;
}
cb_tone(pin, value, duration);
#else
if(pin == RADIOLIB_NC) {
return;
}
#if defined(ESP32)
// ESP32 tone() emulation
(void)duration;
ledcAttachPin(pin, RADIOLIB_TONE_ESP32_CHANNEL);
ledcWriteTone(RADIOLIB_TONE_ESP32_CHANNEL, value);
#elif defined(RADIOLIB_MBED_TONE_OVERRIDE)
// better tone for mbed OS boards
(void)duration;
if(!pwmPin) {
pwmPin = new mbed::PwmOut(digitalPinToPinName(pin));
}
pwmPin->period(1.0 / value);
pwmPin->write(0.5);
#else
(void)value;
(void)duration;
#endif
#endif
}
void Module::noTone(RADIOLIB_PIN_TYPE pin) {
#if !defined(RADIOLIB_TONE_UNSUPPORTED)
if((pin == RADIOLIB_NC) || (cb_noTone == nullptr)) {
return;
}
#if defined(ARDUINO_ARCH_STM32)
cb_noTone(pin, false);
#else
cb_noTone(pin);
#endif
#else
if(pin == RADIOLIB_NC) {
return;
}
#if defined(ESP32)
// ESP32 tone() emulation
ledcDetachPin(pin);
ledcWrite(RADIOLIB_TONE_ESP32_CHANNEL, 0);
#elif defined(RADIOLIB_MBED_TONE_OVERRIDE)
// better tone for mbed OS boards
(void)pin;
pwmPin->suspend();
#endif
#endif
}
void Module::attachInterrupt(RADIOLIB_PIN_TYPE interruptNum, void (*userFunc)(void), RADIOLIB_INTERRUPT_STATUS mode) {
if((interruptNum == RADIOLIB_NC) || (cb_attachInterrupt == nullptr)) {
return;
}
cb_attachInterrupt(interruptNum, userFunc, mode);
}
void Module::detachInterrupt(RADIOLIB_PIN_TYPE interruptNum) {
if((interruptNum == RADIOLIB_NC) || (cb_detachInterrupt == nullptr)) {
return;
}
cb_detachInterrupt(interruptNum);
}
void Module::yield() {
if(cb_yield == nullptr) {
return;
}
#if !defined(RADIOLIB_YIELD_UNSUPPORTED)
cb_yield();
#endif
}
void Module::delay(uint32_t ms) {
if(cb_delay == nullptr) {
return;
}
cb_delay(ms);
}
void Module::delayMicroseconds(uint32_t us) {
if(cb_delayMicroseconds == nullptr) {
return;
}
cb_delayMicroseconds(us);
}
uint32_t Module::millis() {
if(cb_millis == nullptr) {
return(0);
}
return(cb_millis());
}
uint32_t Module::micros() {
if(cb_micros == nullptr) {
return(0);
}
return(cb_micros());
}
void Module::begin() {
if(cb_SPIbegin == nullptr) {
return;
}
(this->*cb_SPIbegin)();
}
void Module::beginTransaction() {
if(cb_SPIbeginTransaction == nullptr) {
return;
}
(this->*cb_SPIbeginTransaction)();
}
uint8_t Module::transfer(uint8_t b) {
if(cb_SPItransfer == nullptr) {
return(0xFF);
}
return((this->*cb_SPItransfer)(b));
}
void Module::endTransaction() {
if(cb_SPIendTransaction == nullptr) {
return;
}
(this->*cb_SPIendTransaction)();
}
void Module::end() {
if(cb_SPIend == nullptr) {
return;
}
(this->*cb_SPIend)();
}
#if defined(RADIOLIB_BUILD_ARDUINO)
void Module::SPIbegin() {
_spi->begin();
}
void Module::SPIbeginTransaction() {
_spi->beginTransaction(_spiSettings);
}
uint8_t Module::SPItransfer(uint8_t b) {
return(_spi->transfer(b));
}
void Module::SPIendTransaction() {
_spi->endTransaction();
}
void Module::SPIend() {
_spi->end();
}
#endif
uint8_t Module::flipBits(uint8_t b) {
b = (b & 0xF0) >> 4 | (b & 0x0F) << 4;
b = (b & 0xCC) >> 2 | (b & 0x33) << 2;
b = (b & 0xAA) >> 1 | (b & 0x55) << 1;
return b;
}
uint16_t Module::flipBits16(uint16_t i) {
i = (i & 0xFF00) >> 8 | (i & 0x00FF) << 8;
i = (i & 0xF0F0) >> 4 | (i & 0x0F0F) << 4;
i = (i & 0xCCCC) >> 2 | (i & 0x3333) << 2;
i = (i & 0xAAAA) >> 1 | (i & 0x5555) << 1;
return i;
}
void Module::setRfSwitchPins(RADIOLIB_PIN_TYPE rxEn, RADIOLIB_PIN_TYPE txEn) {
_useRfSwitch = true;
_rxEn = rxEn;
_txEn = txEn;
this->pinMode(rxEn, OUTPUT);
this->pinMode(txEn, OUTPUT);
}
void Module::setRfSwitchState(RADIOLIB_PIN_STATUS rxPinState, RADIOLIB_PIN_STATUS txPinState) {
// check RF switch control is enabled
if(!_useRfSwitch) {
return;
}
// set pins
this->digitalWrite(_rxEn, rxPinState);
this->digitalWrite(_txEn, txPinState);
}