OpenRTX/rtos/uC-LIB/lib_mem.h

1439 wiersze
88 KiB
C

/*
*********************************************************************************************************
* uC/LIB
* Custom Library Modules
*
* Copyright 2004-2020 Silicon Laboratories Inc. www.silabs.com
*
* SPDX-License-Identifier: APACHE-2.0
*
* This software is subject to an open source license and is distributed by
* Silicon Laboratories Inc. pursuant to the terms of the Apache License,
* Version 2.0 available at www.apache.org/licenses/LICENSE-2.0.
*
*********************************************************************************************************
*/
/*
*********************************************************************************************************
*
* STANDARD MEMORY OPERATIONS
*
* Filename : lib_mem.h
* Version : V1.39.00
*********************************************************************************************************
* Note(s) : (1) NO compiler-supplied standard library functions are used in library or product software.
*
* (a) ALL standard library functions are implemented in the custom library modules :
*
* (1) \<Custom Library Directory>\lib_*.*
*
* (2) \<Custom Library Directory>\Ports\<cpu>\<compiler>\lib*_a.*
*
* where
* <Custom Library Directory> directory path for custom library software
* <cpu> directory name for specific processor (CPU)
* <compiler> directory name for specific compiler
*
* (b) Product-specific library functions are implemented in individual products.
*
* (2) Assumes the following versions (or more recent) of software modules are included in
* the project build :
*
* (a) uC/CPU V1.27
*********************************************************************************************************
*/
/*
*********************************************************************************************************
* MODULE
*
* Note(s) : (1) This memory library header file is protected from multiple pre-processor inclusion through
* use of the memory library module present pre-processor macro definition.
*********************************************************************************************************
*/
#ifndef LIB_MEM_MODULE_PRESENT /* See Note #1. */
#define LIB_MEM_MODULE_PRESENT
/*
*********************************************************************************************************
* INCLUDE FILES
*
* Note(s) : (1) The custom library software files are located in the following directories :
*
* (a) \<Your Product Application>\lib_cfg.h
*
* (b) \<Custom Library Directory>\lib_*.*
*
* where
* <Your Product Application> directory path for Your Product's Application
* <Custom Library Directory> directory path for custom library software
*
* (2) CPU-configuration software files are located in the following directories :
*
* (a) \<CPU-Compiler Directory>\cpu_*.*
* (b) \<CPU-Compiler Directory>\<cpu>\<compiler>\cpu*.*
*
* where
* <CPU-Compiler Directory> directory path for common CPU-compiler software
* <cpu> directory name for specific processor (CPU)
* <compiler> directory name for specific compiler
*
* (3) Compiler MUST be configured to include as additional include path directories :
*
* (a) '\<Your Product Application>\' directory See Note #1a
*
* (b) '\<Custom Library Directory>\' directory See Note #1b
*
* (c) (1) '\<CPU-Compiler Directory>\' directory See Note #2a
* (2) '\<CPU-Compiler Directory>\<cpu>\<compiler>\' directory See Note #2b
*
* (4) NO compiler-supplied standard library functions SHOULD be used.
*********************************************************************************************************
*/
#include <cpu.h>
#include <cpu_core.h>
#include <lib_def.h>
#include <lib_cfg.h>
/*
*********************************************************************************************************
* EXTERNS
*********************************************************************************************************
*/
#ifdef LIB_MEM_MODULE
#define LIB_MEM_EXT
#else
#define LIB_MEM_EXT extern
#endif
/*
*********************************************************************************************************
* DEFINES
*********************************************************************************************************
*/
#define LIB_MEM_PADDING_ALIGN_NONE 1u
#define LIB_MEM_BLK_QTY_UNLIMITED 0u
/*
*********************************************************************************************************
* DEFAULT CONFIGURATION
*********************************************************************************************************
*/
/*
*********************************************************************************************************
* MEMORY LIBRARY ARGUMENT CHECK CONFIGURATION
*
* Note(s) : (1) Configure LIB_MEM_CFG_ARG_CHK_EXT_EN to enable/disable the memory library suite external
* argument check feature :
*
* (a) When ENABLED, arguments received from any port interface provided by the developer
* or application are checked/validated.
*
* (b) When DISABLED, NO arguments received from any port interface provided by the developer
* or application are checked/validated.
*********************************************************************************************************
*/
/* Cfg external argument check feature (see Note #1) : */
#ifndef LIB_MEM_CFG_ARG_CHK_EXT_EN
#define LIB_MEM_CFG_ARG_CHK_EXT_EN DEF_DISABLED
/* DEF_DISABLED Argument check DISABLED */
/* DEF_ENABLED Argument check ENABLED */
#endif
/*
*********************************************************************************************************
* MEMORY LIBRARY ASSEMBLY OPTIMIZATION CONFIGURATION
*
* Note(s) : (1) Configure LIB_MEM_CFG_OPTIMIZE_ASM_EN to enable/disable assembly-optimized memory
* functions.
*********************************************************************************************************
*/
/* Cfg assembly-optimized function(s) [see Note #1] : */
#ifndef LIB_MEM_CFG_OPTIMIZE_ASM_EN
#define LIB_MEM_CFG_OPTIMIZE_ASM_EN DEF_DISABLED
/* DEF_DISABLED Assembly-optimized fnct(s) DISABLED */
/* DEF_ENABLED Assembly-optimized fnct(s) ENABLED */
#endif
/*
*********************************************************************************************************
* MEMORY ALLOCATION DEBUG INFORMATION CONFIGURATION
*
* Note(s) : (1) Configure LIB_MEM_CFG_DBG_INFO_EN to enable/disable debug information associated to each
* segment allocation.
*********************************************************************************************************
*/
#ifndef LIB_MEM_CFG_DBG_INFO_EN
#define LIB_MEM_CFG_DBG_INFO_EN DEF_DISABLED
#endif
/*
*********************************************************************************************************
* HEAP PADDING ALIGN CONFIGURATION
*
* Note(s) : (1) Configure LIB_MEM_CFG_HEAP_PADDING_ALIGN to set the padding alignment of any buffer
* allocated from the heap.
*********************************************************************************************************
*/
#ifndef LIB_MEM_CFG_HEAP_PADDING_ALIGN
#define LIB_MEM_CFG_HEAP_PADDING_ALIGN LIB_MEM_PADDING_ALIGN_NONE
#endif
/*
*********************************************************************************************************
* DATA TYPES
*********************************************************************************************************
*/
/*
*********************************************************************************************************
* LIB MEM TYPE
*
* Note(s) : (1) 'LIB_MEM_TYPE' declared as 'CPU_INT32U' & all 'LIB_MEM_TYPE's #define'd with large, non-trivial
* values to trap & discard invalid/corrupted library memory objects based on 'LIB_MEM_TYPE'.
*********************************************************************************************************
*/
typedef CPU_INT32U LIB_MEM_TYPE;
/*
*********************************************************************************************************
* MEMORY POOL BLOCK QUANTITY DATA TYPE
*********************************************************************************************************
*/
typedef CPU_SIZE_T MEM_POOL_BLK_QTY;
/*
*********************************************************************************************************
* MEMORY POOL TABLE IX TYPE
*********************************************************************************************************
*/
typedef MEM_POOL_BLK_QTY MEM_POOL_IX;
/*
*********************************************************************************************************
* MEMORY ALLOCATION TRACKING INFO DATA TYPE
*********************************************************************************************************
*/
#if (LIB_MEM_CFG_DBG_INFO_EN == DEF_ENABLED)
typedef struct mem_alloc_info MEM_ALLOC_INFO;
struct mem_alloc_info { /* ------------------ MEM ALLOC INFO ------------------ */
const CPU_CHAR *NamePtr; /* Ptr to name. */
CPU_SIZE_T Size; /* Total alloc'd size, in bytes. */
MEM_ALLOC_INFO *NextPtr; /* Ptr to next alloc info in list. */
};
#endif
/*
*********************************************************************************************************
* MEMORY SEGMENTS DATA TYPES
*********************************************************************************************************
*/
typedef struct mem_seg MEM_SEG; /* --------------------- SEG DATA --------------------- */
struct mem_seg {
CPU_ADDR AddrBase; /* Seg start addr. */
CPU_ADDR AddrEnd; /* Seg end addr (last addr). */
CPU_ADDR AddrNext; /* Next free addr. */
MEM_SEG *NextPtr; /* Ptr to next seg. */
CPU_SIZE_T PaddingAlign; /* Padding alignment in byte. */
#if (LIB_MEM_CFG_DBG_INFO_EN == DEF_ENABLED)
const CPU_CHAR *NamePtr; /* Ptr to seg name. */
MEM_ALLOC_INFO *AllocInfoHeadPtr; /* Ptr to head of alloc info struct list. */
#endif
};
typedef struct mem_seg_info { /* --------------------- SEG INFO --------------------- */
CPU_SIZE_T UsedSize; /* Used size, independently of alignment. */
CPU_SIZE_T TotalSize; /* Total seg capacity, in octets. */
CPU_ADDR AddrBase;
CPU_ADDR AddrNextAlloc; /* Next aligned address, 0 if none available. */
} MEM_SEG_INFO;
/*
*********************************************************************************************************
* (STATIC) MEMORY POOL DATA TYPES
*
* Note(s) : (1) Free static memory pool blocks are indexed in the 'BlkFreeTbl' table. Newly freed blocks
* are added at the first available position in the table and blocks are retrieved from the
* last occupied position, in a LIFO fashion.
*
* /-------------------------------\
* |/------------\ |
* BlkFreeTbl || Start v v End
* /--------\ || /--------------------------------------------\
* |p_free_1|---/| | | | | | |
* |--------| | \--------------------------------------------/
* |p_free_2|----/ ^ | |
* |--------| | |__Blk___|
* |p_free_3|--------/ (Next block to be retrieved.) Size
* |--------|
* | |<-------- (Next block to be freed.)
* \--------/
*
*********************************************************************************************************
*/
/* --------------------- MEM POOL --------------------- */
typedef struct mem_pool {
void *PoolAddrStart; /* Ptr to start of mem seg for mem pool blks. */
void *PoolAddrEnd; /* Ptr to end of mem seg for mem pool blks. */
MEM_POOL_BLK_QTY BlkNbr; /* Nbr of mem pool blks. */
CPU_SIZE_T BlkSize; /* Size of mem pool blks (in octets). */
void **BlkFreeTbl; /* Tbl of free mem pool blks. */
CPU_SIZE_T BlkFreeTblIx; /* Ix of next free blk free tbl entry. */
} MEM_POOL;
/*
*********************************************************************************************************
* DYNAMIC MEMORY POOL DATA TYPE
*
* Note(s) : (1) Dynamic memory pool blocks are not indexed in a table. Only freed blocks are linked using
* a singly linked list, in a LIFO fashion; newly freed blocks are inserted at the head of the
* list and blocks are also retrieved from the head of the list.
*
* (2) Pointers to the next block are only present when a block is free, using the first location
* in the allocated memory block. The user of dynamic memory pool must not assume his data
* will not be overwritten when a block is freed.
*
* /----------------\
* /----------\ | /----------\ | /----------\ /----------\
* BlkFreePtr-->|(NextPtr) |---/ | | \--->|(NextPtr) |-->|(NextPtr) |--> DEF_NULL
* |----------| | Blk in | |----------| |----------|
* | | | use | | | | |
* | | | | | | | |
* \----------/ \----------/ \----------/ \----------/
*
*********************************************************************************************************
*/
typedef struct mem_dyn_pool { /* ---------------- DYN MEM POOL DATA ----------------- */
MEM_SEG *PoolSegPtr; /* Mem pool from which blks are alloc'd. */
CPU_SIZE_T BlkSize; /* Size of pool blks, in octets. */
CPU_SIZE_T BlkAlign; /* Align req'd for blks, in octets. */
CPU_SIZE_T BlkPaddingAlign; /* Padding alignment in bytes for this mem seg. */
void *BlkFreePtr; /* Ptr to first free blk. */
CPU_SIZE_T BlkQtyMax; /* Max qty of blk in dyn mem pool. 0 = unlimited. */
CPU_SIZE_T BlkAllocCnt; /* Cnt of alloc blk. */
#if (LIB_MEM_CFG_DBG_INFO_EN == DEF_ENABLED)
const CPU_CHAR *NamePtr; /* Ptr to mem pool name. */
#endif
} MEM_DYN_POOL;
/*
*********************************************************************************************************
* GLOBAL VARIABLES
*********************************************************************************************************
*/
/*
*********************************************************************************************************
* MACRO'S
*********************************************************************************************************
*/
/*
*********************************************************************************************************
* MEMORY DATA VALUE MACRO'S
*
* Note(s) : (1) (a) Some variables & variable buffers to pass & receive data values MUST start on appropriate
* CPU word-aligned addresses. This is required because most word-aligned processors are more
* efficient & may even REQUIRE that multi-octet words start on CPU word-aligned addresses.
*
* (1) For 16-bit word-aligned processors, this means that
*
* all 16- & 32-bit words MUST start on addresses that are multiples of 2 octets
*
* (2) For 32-bit word-aligned processors, this means that
*
* all 16-bit words MUST start on addresses that are multiples of 2 octets
* all 32-bit words MUST start on addresses that are multiples of 4 octets
*
* (b) However, some data values macro's appropriately access data values from any CPU addresses,
* word-aligned or not. Thus for processors that require data word alignment, data words can
* be accessed to/from any CPU address, word-aligned or not, without generating data-word-
* alignment exceptions/faults.
*********************************************************************************************************
*/
/*
*********************************************************************************************************
* ENDIAN WORD ORDER MACRO'S
*
* Description : Convert data values to & from big-, little, or host-endian CPU word order.
*
* Argument(s) : val Data value to convert (see Notes #1 & #2).
*
* Return(s) : Converted data value (see Notes #1 & #2).
*
* Caller(s) : Application.
*
* Note(s) : (1) Convert data values to the desired data-word order :
*
* MEM_VAL_BIG_TO_LITTLE_xx() Convert big- endian data values
* to little- endian data values
* MEM_VAL_LITTLE_TO_BIG_xx() Convert little- endian data values
* to big- endian data values
* MEM_VAL_xxx_TO_HOST_xx() Convert big-/little-endian data values
* to host- endian data values
* MEM_VAL_HOST_TO_xxx_xx() Convert host- endian data values
* to big-/little-endian data values
*
* See also 'cpu.h CPU WORD CONFIGURATION Note #2'.
*
* (2) 'val' data value to convert & any variable to receive the returned conversion MUST
* start on appropriate CPU word-aligned addresses.
*
* See also 'MEMORY DATA VALUE MACRO'S Note #1a'.
*
* (3) MEM_VAL_COPY_xxx() macro's are more efficient than generic endian word order macro's &
* are also independent of CPU data-word-alignment & SHOULD be used whenever possible.
*
* See also 'MEM_VAL_COPY_GET_xxx() Note #4'
* & 'MEM_VAL_COPY_SET_xxx() Note #4'.
*
* (4) Generic endian word order macro's are NOT atomic operations & MUST NOT be used on any
* non-static (i.e. volatile) variables, registers, hardware, etc.; without the caller of
* the macro's providing some form of additional protection (e.g. mutual exclusion).
*
* (5) The 'CPU_CFG_ENDIAN_TYPE' pre-processor 'else'-conditional code SHOULD never be compiled/
* linked since each 'cpu.h' SHOULD ensure that the CPU data-word-memory order configuration
* constant (CPU_CFG_ENDIAN_TYPE) is configured with an appropriate data-word-memory order
* value (see 'cpu.h CPU WORD CONFIGURATION Note #2'). The 'else'-conditional code is
* included as an extra precaution in case 'cpu.h' is incorrectly configured.
*********************************************************************************************************
*/
#if ((CPU_CFG_DATA_SIZE == CPU_WORD_SIZE_64) || \
(CPU_CFG_DATA_SIZE == CPU_WORD_SIZE_32))
#define MEM_VAL_BIG_TO_LITTLE_16(val) ((CPU_INT16U)(((CPU_INT16U)((((CPU_INT16U)(val)) & (CPU_INT16U) 0xFF00u) >> (1u * DEF_OCTET_NBR_BITS))) | \
((CPU_INT16U)((((CPU_INT16U)(val)) & (CPU_INT16U) 0x00FFu) << (1u * DEF_OCTET_NBR_BITS)))))
#define MEM_VAL_BIG_TO_LITTLE_32(val) ((CPU_INT32U)(((CPU_INT32U)((((CPU_INT32U)(val)) & (CPU_INT32U)0xFF000000u) >> (3u * DEF_OCTET_NBR_BITS))) | \
((CPU_INT32U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x00FF0000u) >> (1u * DEF_OCTET_NBR_BITS))) | \
((CPU_INT32U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x0000FF00u) << (1u * DEF_OCTET_NBR_BITS))) | \
((CPU_INT32U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x000000FFu) << (3u * DEF_OCTET_NBR_BITS)))))
#elif (CPU_CFG_DATA_SIZE == CPU_WORD_SIZE_16)
#define MEM_VAL_BIG_TO_LITTLE_16(val) ((CPU_INT16U)(((CPU_INT16U)((((CPU_INT16U)(val)) & (CPU_INT16U) 0xFF00u) >> (1u * DEF_OCTET_NBR_BITS))) | \
((CPU_INT16U)((((CPU_INT16U)(val)) & (CPU_INT16U) 0x00FFu) << (1u * DEF_OCTET_NBR_BITS)))))
#define MEM_VAL_BIG_TO_LITTLE_32(val) ((CPU_INT32U)(((CPU_INT32U)((((CPU_INT32U)(val)) & (CPU_INT32U)0xFF000000u) >> (1u * DEF_OCTET_NBR_BITS))) | \
((CPU_INT32U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x00FF0000u) << (1u * DEF_OCTET_NBR_BITS))) | \
((CPU_INT32U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x0000FF00u) >> (1u * DEF_OCTET_NBR_BITS))) | \
((CPU_INT32U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x000000FFu) << (1u * DEF_OCTET_NBR_BITS)))))
#else
#define MEM_VAL_BIG_TO_LITTLE_16(val) (val)
#define MEM_VAL_BIG_TO_LITTLE_32(val) (val)
#endif
#define MEM_VAL_LITTLE_TO_BIG_16(val) MEM_VAL_BIG_TO_LITTLE_16(val)
#define MEM_VAL_LITTLE_TO_BIG_32(val) MEM_VAL_BIG_TO_LITTLE_32(val)
#if (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_BIG)
#define MEM_VAL_BIG_TO_HOST_16(val) (val)
#define MEM_VAL_BIG_TO_HOST_32(val) (val)
#define MEM_VAL_LITTLE_TO_HOST_16(val) MEM_VAL_LITTLE_TO_BIG_16(val)
#define MEM_VAL_LITTLE_TO_HOST_32(val) MEM_VAL_LITTLE_TO_BIG_32(val)
#elif (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_LITTLE)
#define MEM_VAL_BIG_TO_HOST_16(val) MEM_VAL_BIG_TO_LITTLE_16(val)
#define MEM_VAL_BIG_TO_HOST_32(val) MEM_VAL_BIG_TO_LITTLE_32(val)
#define MEM_VAL_LITTLE_TO_HOST_16(val) (val)
#define MEM_VAL_LITTLE_TO_HOST_32(val) (val)
#else /* See Note #5. */
#error "CPU_CFG_ENDIAN_TYPE illegally #defined in 'cpu.h' "
#error " [See 'cpu.h CONFIGURATION ERRORS']"
#endif
#define MEM_VAL_HOST_TO_BIG_16(val) MEM_VAL_BIG_TO_HOST_16(val)
#define MEM_VAL_HOST_TO_BIG_32(val) MEM_VAL_BIG_TO_HOST_32(val)
#define MEM_VAL_HOST_TO_LITTLE_16(val) MEM_VAL_LITTLE_TO_HOST_16(val)
#define MEM_VAL_HOST_TO_LITTLE_32(val) MEM_VAL_LITTLE_TO_HOST_32(val)
/*
*********************************************************************************************************
* MEM_VAL_GET_xxx()
*
* Description : Decode data values from any CPU memory address.
*
* Argument(s) : addr Lowest CPU memory address of data value to decode (see Notes #2 & #3a).
*
* Return(s) : Decoded data value from CPU memory address (see Notes #1 & #3b).
*
* Caller(s) : Application.
*
* Note(s) : (1) Decode data values based on the values' data-word order in CPU memory :
*
* MEM_VAL_GET_xxx_BIG() Decode big- endian data values -- data words' most
* significant octet @ lowest memory address
* MEM_VAL_GET_xxx_LITTLE() Decode little-endian data values -- data words' least
* significant octet @ lowest memory address
* MEM_VAL_GET_xxx() Decode data values using CPU's native or configured
* data-word order
*
* See also 'cpu.h CPU WORD CONFIGURATION Note #2'.
*
* (2) CPU memory addresses/pointers NOT checked for NULL.
*
* (3) (a) MEM_VAL_GET_xxx() macro's decode data values without regard to CPU word-aligned addresses.
* Thus for processors that require data word alignment, data words can be decoded from any
* CPU address, word-aligned or not, without generating data-word-alignment exceptions/faults.
*
* (b) However, any variable to receive the returned data value MUST start on an appropriate CPU
* word-aligned address.
*
* See also 'MEMORY DATA VALUE MACRO'S Note #1'.
*
* (4) MEM_VAL_COPY_GET_xxx() macro's are more efficient than MEM_VAL_GET_xxx() macro's & are
* also independent of CPU data-word-alignment & SHOULD be used whenever possible.
*
* See also 'MEM_VAL_COPY_GET_xxx() Note #4'.
*
* (5) MEM_VAL_GET_xxx() macro's are NOT atomic operations & MUST NOT be used on any non-static
* (i.e. volatile) variables, registers, hardware, etc.; without the caller of the macro's
* providing some form of additional protection (e.g. mutual exclusion).
*
* (6) The 'CPU_CFG_ENDIAN_TYPE' pre-processor 'else'-conditional code SHOULD never be compiled/
* linked since each 'cpu.h' SHOULD ensure that the CPU data-word-memory order configuration
* constant (CPU_CFG_ENDIAN_TYPE) is configured with an appropriate data-word-memory order
* value (see 'cpu.h CPU WORD CONFIGURATION Note #2'). The 'else'-conditional code is
* included as an extra precaution in case 'cpu.h' is incorrectly configured.
*********************************************************************************************************
*/
#define MEM_VAL_GET_INT08U_BIG(addr) ((CPU_INT08U) ((CPU_INT08U)(((CPU_INT08U)(*(((CPU_INT08U *)(addr)) + 0))) << (0u * DEF_OCTET_NBR_BITS))))
#define MEM_VAL_GET_INT16U_BIG(addr) ((CPU_INT16U)(((CPU_INT16U)(((CPU_INT16U)(*(((CPU_INT08U *)(addr)) + 0))) << (1u * DEF_OCTET_NBR_BITS))) + \
((CPU_INT16U)(((CPU_INT16U)(*(((CPU_INT08U *)(addr)) + 1))) << (0u * DEF_OCTET_NBR_BITS)))))
#define MEM_VAL_GET_INT24U_BIG(addr) ((CPU_INT32U)(((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 0))) << (2u * DEF_OCTET_NBR_BITS))) + \
((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 1))) << (1u * DEF_OCTET_NBR_BITS))) + \
((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 2))) << (0u * DEF_OCTET_NBR_BITS)))))
#define MEM_VAL_GET_INT32U_BIG(addr) ((CPU_INT32U)(((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 0))) << (3u * DEF_OCTET_NBR_BITS))) + \
((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 1))) << (2u * DEF_OCTET_NBR_BITS))) + \
((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 2))) << (1u * DEF_OCTET_NBR_BITS))) + \
((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 3))) << (0u * DEF_OCTET_NBR_BITS)))))
#define MEM_VAL_GET_INT08U_LITTLE(addr) ((CPU_INT08U) ((CPU_INT08U)(((CPU_INT08U)(*(((CPU_INT08U *)(addr)) + 0))) << (0u * DEF_OCTET_NBR_BITS))))
#define MEM_VAL_GET_INT16U_LITTLE(addr) ((CPU_INT16U)(((CPU_INT16U)(((CPU_INT16U)(*(((CPU_INT08U *)(addr)) + 0))) << (0u * DEF_OCTET_NBR_BITS))) + \
((CPU_INT16U)(((CPU_INT16U)(*(((CPU_INT08U *)(addr)) + 1))) << (1u * DEF_OCTET_NBR_BITS)))))
#define MEM_VAL_GET_INT24U_LITTLE(addr) ((CPU_INT32U)(((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 0))) << (0u * DEF_OCTET_NBR_BITS))) + \
((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 1))) << (1u * DEF_OCTET_NBR_BITS))) + \
((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 2))) << (2u * DEF_OCTET_NBR_BITS)))))
#define MEM_VAL_GET_INT32U_LITTLE(addr) ((CPU_INT32U)(((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 0))) << (0u * DEF_OCTET_NBR_BITS))) + \
((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 1))) << (1u * DEF_OCTET_NBR_BITS))) + \
((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 2))) << (2u * DEF_OCTET_NBR_BITS))) + \
((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 3))) << (3u * DEF_OCTET_NBR_BITS)))))
#if (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_BIG)
#define MEM_VAL_GET_INT08U(addr) MEM_VAL_GET_INT08U_BIG(addr)
#define MEM_VAL_GET_INT16U(addr) MEM_VAL_GET_INT16U_BIG(addr)
#define MEM_VAL_GET_INT24U(addr) MEM_VAL_GET_INT24U_BIG(addr)
#define MEM_VAL_GET_INT32U(addr) MEM_VAL_GET_INT32U_BIG(addr)
#elif (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_LITTLE)
#define MEM_VAL_GET_INT08U(addr) MEM_VAL_GET_INT08U_LITTLE(addr)
#define MEM_VAL_GET_INT16U(addr) MEM_VAL_GET_INT16U_LITTLE(addr)
#define MEM_VAL_GET_INT24U(addr) MEM_VAL_GET_INT24U_LITTLE(addr)
#define MEM_VAL_GET_INT32U(addr) MEM_VAL_GET_INT32U_LITTLE(addr)
#else /* See Note #6. */
#error "CPU_CFG_ENDIAN_TYPE illegally #defined in 'cpu.h' "
#error " [See 'cpu.h CONFIGURATION ERRORS']"
#endif
/*
*********************************************************************************************************
* MEM_VAL_SET_xxx()
*
* Description : Encode data values to any CPU memory address.
*
* Argument(s) : addr Lowest CPU memory address to encode data value (see Notes #2 & #3a).
*
* val Data value to encode (see Notes #1 & #3b).
*
* Return(s) : none.
*
* Caller(s) : Application.
*
* Note(s) : (1) Encode data values into CPU memory based on the values' data-word order :
*
* MEM_VAL_SET_xxx_BIG() Encode big- endian data values -- data words' most
* significant octet @ lowest memory address
* MEM_VAL_SET_xxx_LITTLE() Encode little-endian data values -- data words' least
* significant octet @ lowest memory address
* MEM_VAL_SET_xxx() Encode data values using CPU's native or configured
* data-word order
*
* See also 'cpu.h CPU WORD CONFIGURATION Note #2'.
*
* (2) CPU memory addresses/pointers NOT checked for NULL.
*
* (3) (a) MEM_VAL_SET_xxx() macro's encode data values without regard to CPU word-aligned addresses.
* Thus for processors that require data word alignment, data words can be encoded to any
* CPU address, word-aligned or not, without generating data-word-alignment exceptions/faults.
*
* (b) However, 'val' data value to encode MUST start on an appropriate CPU word-aligned address.
*
* See also 'MEMORY DATA VALUE MACRO'S Note #1'.
*
* (4) MEM_VAL_COPY_SET_xxx() macro's are more efficient than MEM_VAL_SET_xxx() macro's & are
* also independent of CPU data-word-alignment & SHOULD be used whenever possible.
*
* See also 'MEM_VAL_COPY_SET_xxx() Note #4'.
*
* (5) MEM_VAL_SET_xxx() macro's are NOT atomic operations & MUST NOT be used on any non-static
* (i.e. volatile) variables, registers, hardware, etc.; without the caller of the macro's
* providing some form of additional protection (e.g. mutual exclusion).
*
* (6) The 'CPU_CFG_ENDIAN_TYPE' pre-processor 'else'-conditional code SHOULD never be compiled/
* linked since each 'cpu.h' SHOULD ensure that the CPU data-word-memory order configuration
* constant (CPU_CFG_ENDIAN_TYPE) is configured with an appropriate data-word-memory order
* value (see 'cpu.h CPU WORD CONFIGURATION Note #2'). The 'else'-conditional code is
* included as an extra precaution in case 'cpu.h' is incorrectly configured.
*********************************************************************************************************
*/
#define MEM_VAL_SET_INT08U_BIG(addr, val) do { (*(((CPU_INT08U *)(addr)) + 0)) = ((CPU_INT08U)((((CPU_INT08U)(val)) & (CPU_INT08U) 0xFFu) >> (0u * DEF_OCTET_NBR_BITS))); } while (0)
#define MEM_VAL_SET_INT16U_BIG(addr, val) do { (*(((CPU_INT08U *)(addr)) + 0)) = ((CPU_INT08U)((((CPU_INT16U)(val)) & (CPU_INT16U) 0xFF00u) >> (1u * DEF_OCTET_NBR_BITS))); \
(*(((CPU_INT08U *)(addr)) + 1)) = ((CPU_INT08U)((((CPU_INT16U)(val)) & (CPU_INT16U) 0x00FFu) >> (0u * DEF_OCTET_NBR_BITS))); } while (0)
#define MEM_VAL_SET_INT24U_BIG(addr, val) do { (*(((CPU_INT08U *)(addr)) + 0)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U) 0xFF0000u) >> (2u * DEF_OCTET_NBR_BITS))); \
(*(((CPU_INT08U *)(addr)) + 1)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U) 0x00FF00u) >> (1u * DEF_OCTET_NBR_BITS))); \
(*(((CPU_INT08U *)(addr)) + 2)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U) 0x0000FFu) >> (0u * DEF_OCTET_NBR_BITS))); } while (0)
#define MEM_VAL_SET_INT32U_BIG(addr, val) do { (*(((CPU_INT08U *)(addr)) + 0)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U)0xFF000000u) >> (3u * DEF_OCTET_NBR_BITS))); \
(*(((CPU_INT08U *)(addr)) + 1)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x00FF0000u) >> (2u * DEF_OCTET_NBR_BITS))); \
(*(((CPU_INT08U *)(addr)) + 2)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x0000FF00u) >> (1u * DEF_OCTET_NBR_BITS))); \
(*(((CPU_INT08U *)(addr)) + 3)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x000000FFu) >> (0u * DEF_OCTET_NBR_BITS))); } while (0)
#define MEM_VAL_SET_INT08U_LITTLE(addr, val) do { (*(((CPU_INT08U *)(addr)) + 0)) = ((CPU_INT08U)((((CPU_INT08U)(val)) & (CPU_INT08U) 0xFFu) >> (0u * DEF_OCTET_NBR_BITS))); } while (0)
#define MEM_VAL_SET_INT16U_LITTLE(addr, val) do { (*(((CPU_INT08U *)(addr)) + 0)) = ((CPU_INT08U)((((CPU_INT16U)(val)) & (CPU_INT16U) 0x00FFu) >> (0u * DEF_OCTET_NBR_BITS))); \
(*(((CPU_INT08U *)(addr)) + 1)) = ((CPU_INT08U)((((CPU_INT16U)(val)) & (CPU_INT16U) 0xFF00u) >> (1u * DEF_OCTET_NBR_BITS))); } while (0)
#define MEM_VAL_SET_INT24U_LITTLE(addr, val) do { (*(((CPU_INT08U *)(addr)) + 0)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U) 0x0000FFu) >> (0u * DEF_OCTET_NBR_BITS))); \
(*(((CPU_INT08U *)(addr)) + 1)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U) 0x00FF00u) >> (1u * DEF_OCTET_NBR_BITS))); \
(*(((CPU_INT08U *)(addr)) + 2)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U) 0xFF0000u) >> (2u * DEF_OCTET_NBR_BITS))); } while (0)
#define MEM_VAL_SET_INT32U_LITTLE(addr, val) do { (*(((CPU_INT08U *)(addr)) + 0)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x000000FFu) >> (0u * DEF_OCTET_NBR_BITS))); \
(*(((CPU_INT08U *)(addr)) + 1)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x0000FF00u) >> (1u * DEF_OCTET_NBR_BITS))); \
(*(((CPU_INT08U *)(addr)) + 2)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x00FF0000u) >> (2u * DEF_OCTET_NBR_BITS))); \
(*(((CPU_INT08U *)(addr)) + 3)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U)0xFF000000u) >> (3u * DEF_OCTET_NBR_BITS))); } while (0)
#if (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_BIG)
#define MEM_VAL_SET_INT08U(addr, val) MEM_VAL_SET_INT08U_BIG((addr), (val))
#define MEM_VAL_SET_INT16U(addr, val) MEM_VAL_SET_INT16U_BIG((addr), (val))
#define MEM_VAL_SET_INT24U(addr, val) MEM_VAL_SET_INT24U_BIG((addr), (val))
#define MEM_VAL_SET_INT32U(addr, val) MEM_VAL_SET_INT32U_BIG((addr), (val))
#elif (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_LITTLE)
#define MEM_VAL_SET_INT08U(addr, val) MEM_VAL_SET_INT08U_LITTLE((addr), (val))
#define MEM_VAL_SET_INT16U(addr, val) MEM_VAL_SET_INT16U_LITTLE((addr), (val))
#define MEM_VAL_SET_INT24U(addr, val) MEM_VAL_SET_INT24U_LITTLE((addr), (val))
#define MEM_VAL_SET_INT32U(addr, val) MEM_VAL_SET_INT32U_LITTLE((addr), (val))
#else /* See Note #6. */
#error "CPU_CFG_ENDIAN_TYPE illegally #defined in 'cpu.h' "
#error " [See 'cpu.h CONFIGURATION ERRORS']"
#endif
/*
*********************************************************************************************************
* MEM_VAL_COPY_GET_xxx()
*
* Description : Copy & decode data values from any CPU memory address to any CPU memory address.
*
* Argument(s) : addr_dest Lowest CPU memory address to copy/decode source address's data value
* (see Notes #2 & #3).
*
* addr_src Lowest CPU memory address of data value to copy/decode
* (see Notes #2 & #3).
*
* Return(s) : none.
*
* Caller(s) : Application.
*
* Note(s) : (1) Copy/decode data values based on the values' data-word order :
*
* MEM_VAL_COPY_GET_xxx_BIG() Decode big- endian data values -- data words' most
* significant octet @ lowest memory address
* MEM_VAL_COPY_GET_xxx_LITTLE() Decode little-endian data values -- data words' least
* significant octet @ lowest memory address
* MEM_VAL_COPY_GET_xxx() Decode data values using CPU's native or configured
* data-word order
*
* See also 'cpu.h CPU WORD CONFIGURATION Note #2'.
*
* (2) (a) CPU memory addresses/pointers NOT checked for NULL.
*
* (b) CPU memory addresses/buffers NOT checked for overlapping.
*
* (1) IEEE Std 1003.1, 2004 Edition, Section 'memcpy() : DESCRIPTION' states that
* "copying ... between objects that overlap ... is undefined".
*
* (3) MEM_VAL_COPY_GET_xxx() macro's copy/decode data values without regard to CPU word-aligned
* addresses. Thus for processors that require data word alignment, data words can be copied/
* decoded to/from any CPU address, word-aligned or not, without generating data-word-alignment
* exceptions/faults.
*
* (4) MEM_VAL_COPY_GET_xxx() macro's are more efficient than MEM_VAL_GET_xxx() macro's & are
* also independent of CPU data-word-alignment & SHOULD be used whenever possible.
*
* See also 'MEM_VAL_GET_xxx() Note #4'.
*
* (5) Since octet-order copy/conversion are inverse operations, MEM_VAL_COPY_GET_xxx() &
* MEM_VAL_COPY_SET_xxx() macros are inverse, but identical, operations & are provided
* in both forms for semantics & consistency.
*
* See also 'MEM_VAL_COPY_SET_xxx() Note #5'.
*
* (6) MEM_VAL_COPY_GET_xxx() macro's are NOT atomic operations & MUST NOT be used on any non-
* static (i.e. volatile) variables, registers, hardware, etc.; without the caller of the
* macro's providing some form of additional protection (e.g. mutual exclusion).
*
* (7) The 'CPU_CFG_ENDIAN_TYPE' pre-processor 'else'-conditional code SHOULD never be compiled/
* linked since each 'cpu.h' SHOULD ensure that the CPU data-word-memory order configuration
* constant (CPU_CFG_ENDIAN_TYPE) is configured with an appropriate data-word-memory order
* value (see 'cpu.h CPU WORD CONFIGURATION Note #2'). The 'else'-conditional code is
* included as an extra precaution in case 'cpu.h' is incorrectly configured.
*********************************************************************************************************
*/
#if (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_BIG)
#define MEM_VAL_COPY_GET_INT08U_BIG(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); } while (0)
#define MEM_VAL_COPY_GET_INT16U_BIG(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 1)); } while (0)
#define MEM_VAL_COPY_GET_INT24U_BIG(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 1)); \
(*(((CPU_INT08U *)(addr_dest)) + 2)) = (*(((CPU_INT08U *)(addr_src)) + 2)); } while (0)
#define MEM_VAL_COPY_GET_INT32U_BIG(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 1)); \
(*(((CPU_INT08U *)(addr_dest)) + 2)) = (*(((CPU_INT08U *)(addr_src)) + 2)); \
(*(((CPU_INT08U *)(addr_dest)) + 3)) = (*(((CPU_INT08U *)(addr_src)) + 3)); } while (0)
#define MEM_VAL_COPY_GET_INT08U_LITTLE(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); } while (0)
#define MEM_VAL_COPY_GET_INT16U_LITTLE(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 1)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 0)); } while (0)
#define MEM_VAL_COPY_GET_INT24U_LITTLE(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 2)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 1)); \
(*(((CPU_INT08U *)(addr_dest)) + 2)) = (*(((CPU_INT08U *)(addr_src)) + 0)); } while (0)
#define MEM_VAL_COPY_GET_INT32U_LITTLE(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 3)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 2)); \
(*(((CPU_INT08U *)(addr_dest)) + 2)) = (*(((CPU_INT08U *)(addr_src)) + 1)); \
(*(((CPU_INT08U *)(addr_dest)) + 3)) = (*(((CPU_INT08U *)(addr_src)) + 0)); } while (0)
#define MEM_VAL_COPY_GET_INT08U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT08U_BIG((addr_dest), (addr_src))
#define MEM_VAL_COPY_GET_INT16U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT16U_BIG((addr_dest), (addr_src))
#define MEM_VAL_COPY_GET_INT24U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT24U_BIG((addr_dest), (addr_src))
#define MEM_VAL_COPY_GET_INT32U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT32U_BIG((addr_dest), (addr_src))
#elif (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_LITTLE)
#define MEM_VAL_COPY_GET_INT08U_BIG(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); } while (0)
#define MEM_VAL_COPY_GET_INT16U_BIG(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 1)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 0)); } while (0)
#define MEM_VAL_COPY_GET_INT24U_BIG(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 2)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 1)); \
(*(((CPU_INT08U *)(addr_dest)) + 2)) = (*(((CPU_INT08U *)(addr_src)) + 0)); } while (0)
#define MEM_VAL_COPY_GET_INT32U_BIG(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 3)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 2)); \
(*(((CPU_INT08U *)(addr_dest)) + 2)) = (*(((CPU_INT08U *)(addr_src)) + 1)); \
(*(((CPU_INT08U *)(addr_dest)) + 3)) = (*(((CPU_INT08U *)(addr_src)) + 0)); } while (0)
#define MEM_VAL_COPY_GET_INT08U_LITTLE(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); } while (0)
#define MEM_VAL_COPY_GET_INT16U_LITTLE(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 1)); } while (0)
#define MEM_VAL_COPY_GET_INT24U_LITTLE(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 1)); \
(*(((CPU_INT08U *)(addr_dest)) + 2)) = (*(((CPU_INT08U *)(addr_src)) + 2)); } while (0)
#define MEM_VAL_COPY_GET_INT32U_LITTLE(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 1)); \
(*(((CPU_INT08U *)(addr_dest)) + 2)) = (*(((CPU_INT08U *)(addr_src)) + 2)); \
(*(((CPU_INT08U *)(addr_dest)) + 3)) = (*(((CPU_INT08U *)(addr_src)) + 3)); } while (0)
#define MEM_VAL_COPY_GET_INT08U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT08U_LITTLE((addr_dest), (addr_src))
#define MEM_VAL_COPY_GET_INT16U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT16U_LITTLE((addr_dest), (addr_src))
#define MEM_VAL_COPY_GET_INT24U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT24U_LITTLE((addr_dest), (addr_src))
#define MEM_VAL_COPY_GET_INT32U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT32U_LITTLE((addr_dest), (addr_src))
#else /* See Note #7. */
#error "CPU_CFG_ENDIAN_TYPE illegally #defined in 'cpu.h' "
#error " [See 'cpu.h CONFIGURATION ERRORS']"
#endif
/*
*********************************************************************************************************
* MEM_VAL_COPY_GET_INTU_xxx()
*
* Description : Copy & decode data values from any CPU memory address to any CPU memory address for
* any sized data values.
*
* Argument(s) : addr_dest Lowest CPU memory address to copy/decode source address's data value
* (see Notes #2 & #3).
*
* addr_src Lowest CPU memory address of data value to copy/decode
* (see Notes #2 & #3).
*
* val_size Number of data value octets to copy/decode.
*
* Return(s) : none.
*
* Caller(s) : Application.
*
* Note(s) : (1) Copy/decode data values based on the values' data-word order :
*
* MEM_VAL_COPY_GET_INTU_BIG() Decode big- endian data values -- data words' most
* significant octet @ lowest memory address
* MEM_VAL_COPY_GET_INTU_LITTLE() Decode little-endian data values -- data words' least
* significant octet @ lowest memory address
* MEM_VAL_COPY_GET_INTU() Decode data values using CPU's native or configured
* data-word order
*
* See also 'cpu.h CPU WORD CONFIGURATION Note #2'.
*
* (2) (a) CPU memory addresses/pointers NOT checked for NULL.
*
* (b) CPU memory addresses/buffers NOT checked for overlapping.
*
* (1) IEEE Std 1003.1, 2004 Edition, Section 'memcpy() : DESCRIPTION' states that
* "copying ... between objects that overlap ... is undefined".
*
* (3) MEM_VAL_COPY_GET_INTU_xxx() macro's copy/decode data values without regard to CPU word-
* aligned addresses. Thus for processors that require data word alignment, data words
* can be copied/decoded to/from any CPU address, word-aligned or not, without generating
* data-word-alignment exceptions/faults.
*
* (4) MEM_VAL_COPY_GET_xxx() macro's are more efficient than MEM_VAL_COPY_GET_INTU_xxx()
* macro's & SHOULD be used whenever possible.
*
* See also 'MEM_VAL_COPY_GET_xxx() Note #4'.
*
* (5) Since octet-order copy/conversion are inverse operations, MEM_VAL_COPY_GET_INTU_xxx() &
* MEM_VAL_COPY_SET_INTU_xxx() macros are inverse, but identical, operations & are provided
* in both forms for semantics & consistency.
*
* See also 'MEM_VAL_COPY_SET_INTU_xxx() Note #5'.
*
* (6) MEM_VAL_COPY_GET_INTU_xxx() macro's are NOT atomic operations & MUST NOT be used on any
* non-static (i.e. volatile) variables, registers, hardware, etc.; without the caller of
* the macro's providing some form of additional protection (e.g. mutual exclusion).
*
* (7) MISRA-C 2004 Rule 5.2 states that "identifiers in an inner scope shall not use the same
* name as an indentifier in an outer scope, and therefore hide that identifier".
*
* Therefore, to avoid possible redeclaration of commonly-used loop counter identifier names,
* 'i' & 'j', MEM_VAL_COPY_GET_INTU_xxx() loop counter identifier names are prefixed with a
* single underscore.
*
* (8) The 'CPU_CFG_ENDIAN_TYPE' pre-processor 'else'-conditional code SHOULD never be compiled/
* linked since each 'cpu.h' SHOULD ensure that the CPU data-word-memory order configuration
* constant (CPU_CFG_ENDIAN_TYPE) is configured with an appropriate data-word-memory order
* value (see 'cpu.h CPU WORD CONFIGURATION Note #2'). The 'else'-conditional code is
* included as an extra precaution in case 'cpu.h' is incorrectly configured.
*********************************************************************************************************
*/
#if (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_BIG)
#define MEM_VAL_COPY_GET_INTU_BIG(addr_dest, addr_src, val_size) do { \
CPU_SIZE_T _i; \
\
for (_i = 0; _i < (val_size); _i++) { \
(*(((CPU_INT08U *)(addr_dest)) + _i)) = (*(((CPU_INT08U *)(addr_src)) + _i)); \
} \
} while (0)
#define MEM_VAL_COPY_GET_INTU_LITTLE(addr_dest, addr_src, val_size) do { \
CPU_SIZE_T _i; \
CPU_SIZE_T _j; \
\
\
_j = (val_size) - 1; \
\
for (_i = 0; _i < (val_size); _i++) { \
(*(((CPU_INT08U *)(addr_dest)) + _i)) = (*(((CPU_INT08U *)(addr_src)) + _j)); \
_j--; \
} \
} while (0)
#define MEM_VAL_COPY_GET_INTU(addr_dest, addr_src, val_size) MEM_VAL_COPY_GET_INTU_BIG((addr_dest), (addr_src), (val_size))
#elif (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_LITTLE)
#define MEM_VAL_COPY_GET_INTU_BIG(addr_dest, addr_src, val_size) do { \
CPU_SIZE_T _i; \
CPU_SIZE_T _j; \
\
\
_j = (val_size) - 1; \
\
for (_i = 0; _i < (val_size); _i++) { \
(*(((CPU_INT08U *)(addr_dest)) + _i)) = (*(((CPU_INT08U *)(addr_src)) + _j)); \
_j--; \
} \
} while (0)
#define MEM_VAL_COPY_GET_INTU_LITTLE(addr_dest, addr_src, val_size) do { \
CPU_SIZE_T _i; \
\
for (_i = 0; _i < (val_size); _i++) { \
(*(((CPU_INT08U *)(addr_dest)) + _i)) = (*(((CPU_INT08U *)(addr_src)) + _i)); \
} \
} while (0)
#define MEM_VAL_COPY_GET_INTU(addr_dest, addr_src, val_size) MEM_VAL_COPY_GET_INTU_LITTLE((addr_dest), (addr_src), (val_size))
#else /* See Note #8. */
#error "CPU_CFG_ENDIAN_TYPE illegally #defined in 'cpu.h' "
#error " [See 'cpu.h CONFIGURATION ERRORS']"
#endif
/*
*********************************************************************************************************
* MEM_VAL_COPY_SET_xxx()
*
* Description : Copy & encode data values from any CPU memory address to any CPU memory address.
*
* Argument(s) : addr_dest Lowest CPU memory address to copy/encode source address's data value
* (see Notes #2 & #3).
*
* addr_src Lowest CPU memory address of data value to copy/encode
* (see Notes #2 & #3).
*
* Return(s) : none.
*
* Caller(s) : Application.
*
* Note(s) : (1) Copy/encode data values based on the values' data-word order :
*
* MEM_VAL_COPY_SET_xxx_BIG() Encode big- endian data values -- data words' most
* significant octet @ lowest memory address
* MEM_VAL_COPY_SET_xxx_LITTLE() Encode little-endian data values -- data words' least
* significant octet @ lowest memory address
* MEM_VAL_COPY_SET_xxx() Encode data values using CPU's native or configured
* data-word order
*
* See also 'cpu.h CPU WORD CONFIGURATION Note #2'.
*
* (2) (a) CPU memory addresses/pointers NOT checked for NULL.
*
* (b) CPU memory addresses/buffers NOT checked for overlapping.
*
* (1) IEEE Std 1003.1, 2004 Edition, Section 'memcpy() : DESCRIPTION' states that
* "copying ... between objects that overlap ... is undefined".
*
* (3) MEM_VAL_COPY_SET_xxx() macro's copy/encode data values without regard to CPU word-aligned
* addresses. Thus for processors that require data word alignment, data words can be copied/
* encoded to/from any CPU address, word-aligned or not, without generating data-word-alignment
* exceptions/faults.
*
* (4) MEM_VAL_COPY_SET_xxx() macro's are more efficient than MEM_VAL_SET_xxx() macro's & are
* also independent of CPU data-word-alignment & SHOULD be used whenever possible.
*
* See also 'MEM_VAL_SET_xxx() Note #4'.
*
* (5) Since octet-order copy/conversion are inverse operations, MEM_VAL_COPY_GET_xxx() &
* MEM_VAL_COPY_SET_xxx() macros are inverse, but identical, operations & are provided
* in both forms for semantics & consistency.
*
* See also 'MEM_VAL_COPY_GET_xxx() Note #5'.
*
* (6) MEM_VAL_COPY_SET_xxx() macro's are NOT atomic operations & MUST NOT be used on any
* non-static (i.e. volatile) variables, registers, hardware, etc.; without the caller
* of the macro's providing some form of additional protection (e.g. mutual exclusion).
*********************************************************************************************************
*/
/* See Note #5. */
#define MEM_VAL_COPY_SET_INT08U_BIG(addr_dest, addr_src) MEM_VAL_COPY_GET_INT08U_BIG((addr_dest), (addr_src))
#define MEM_VAL_COPY_SET_INT16U_BIG(addr_dest, addr_src) MEM_VAL_COPY_GET_INT16U_BIG((addr_dest), (addr_src))
#define MEM_VAL_COPY_SET_INT24U_BIG(addr_dest, addr_src) MEM_VAL_COPY_GET_INT24U_BIG((addr_dest), (addr_src))
#define MEM_VAL_COPY_SET_INT32U_BIG(addr_dest, addr_src) MEM_VAL_COPY_GET_INT32U_BIG((addr_dest), (addr_src))
#define MEM_VAL_COPY_SET_INT08U_LITTLE(addr_dest, addr_src) MEM_VAL_COPY_GET_INT08U_LITTLE((addr_dest), (addr_src))
#define MEM_VAL_COPY_SET_INT16U_LITTLE(addr_dest, addr_src) MEM_VAL_COPY_GET_INT16U_LITTLE((addr_dest), (addr_src))
#define MEM_VAL_COPY_SET_INT24U_LITTLE(addr_dest, addr_src) MEM_VAL_COPY_GET_INT24U_LITTLE((addr_dest), (addr_src))
#define MEM_VAL_COPY_SET_INT32U_LITTLE(addr_dest, addr_src) MEM_VAL_COPY_GET_INT32U_LITTLE((addr_dest), (addr_src))
#define MEM_VAL_COPY_SET_INT08U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT08U((addr_dest), (addr_src))
#define MEM_VAL_COPY_SET_INT16U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT16U((addr_dest), (addr_src))
#define MEM_VAL_COPY_SET_INT24U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT24U((addr_dest), (addr_src))
#define MEM_VAL_COPY_SET_INT32U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT32U((addr_dest), (addr_src))
/*
*********************************************************************************************************
* MEM_VAL_COPY_SET_INTU_xxx()
*
* Description : Copy & encode data values from any CPU memory address to any CPU memory address for
* any sized data values.
*
* Argument(s) : addr_dest Lowest CPU memory address to copy/encode source address's data value
* (see Notes #2 & #3).
*
* addr_src Lowest CPU memory address of data value to copy/encode
* (see Notes #2 & #3).
*
* val_size Number of data value octets to copy/encode.
*
* Return(s) : none.
*
* Caller(s) : Application.
*
* Note(s) : (1) Copy/encode data values based on the values' data-word order :
*
* MEM_VAL_COPY_SET_INTU_BIG() Encode big- endian data values -- data words' most
* significant octet @ lowest memory address
* MEM_VAL_COPY_SET_INTU_LITTLE() Encode little-endian data values -- data words' least
* significant octet @ lowest memory address
* MEM_VAL_COPY_SET_INTU() Encode data values using CPU's native or configured
* data-word order
*
* See also 'cpu.h CPU WORD CONFIGURATION Note #2'.
*
* (2) (a) CPU memory addresses/pointers NOT checked for NULL.
*
* (b) CPU memory addresses/buffers NOT checked for overlapping.
*
* (1) IEEE Std 1003.1, 2004 Edition, Section 'memcpy() : DESCRIPTION' states that
* "copying ... between objects that overlap ... is undefined".
*
* (3) MEM_VAL_COPY_SET_INTU_xxx() macro's copy/encode data values without regard to CPU word-
* aligned addresses. Thus for processors that require data word alignment, data words
* can be copied/encoded to/from any CPU address, word-aligned or not, without generating
* data-word-alignment exceptions/faults.
*
* (4) MEM_VAL_COPY_SET_xxx() macro's are more efficient than MEM_VAL_COPY_SET_INTU_xxx()
* macro's & SHOULD be used whenever possible.
*
* See also 'MEM_VAL_COPY_SET_xxx() Note #4'.
*
* (5) Since octet-order copy/conversion are inverse operations, MEM_VAL_COPY_GET_INTU_xxx() &
* MEM_VAL_COPY_SET_INTU_xxx() macros are inverse, but identical, operations & are provided
* in both forms for semantics & consistency.
*
* See also 'MEM_VAL_COPY_GET_INTU_xxx() Note #5'.
*
* (6) MEM_VAL_COPY_SET_INTU_xxx() macro's are NOT atomic operations & MUST NOT be used on any
* non-static (i.e. volatile) variables, registers, hardware, etc.; without the caller of
* the macro's providing some form of additional protection (e.g. mutual exclusion).
*********************************************************************************************************
*/
/* See Note #5. */
#define MEM_VAL_COPY_SET_INTU_BIG(addr_dest, addr_src, val_size) MEM_VAL_COPY_GET_INTU_BIG((addr_dest), (addr_src), (val_size))
#define MEM_VAL_COPY_SET_INTU_LITTLE(addr_dest, addr_src, val_size) MEM_VAL_COPY_GET_INTU_LITTLE((addr_dest), (addr_src), (val_size))
#define MEM_VAL_COPY_SET_INTU(addr_dest, addr_src, val_size) MEM_VAL_COPY_GET_INTU((addr_dest), (addr_src), (val_size))
/*
*********************************************************************************************************
* MEM_VAL_COPY_xxx()
*
* Description : Copy data values from any CPU memory address to any CPU memory address.
*
* Argument(s) : addr_dest Lowest CPU memory address to copy source address's data value
* (see Notes #2 & #3).
*
* addr_src Lowest CPU memory address of data value to copy
* (see Notes #2 & #3).
*
* val_size Number of data value octets to copy.
*
* Return(s) : none.
*
* Caller(s) : Application.
*
* Note(s) : (1) MEM_VAL_COPY_xxx() macro's copy data values based on CPU's native data-word order.
*
* See also 'cpu.h CPU WORD CONFIGURATION Note #2'.
*
* (2) (a) CPU memory addresses/pointers NOT checked for NULL.
*
* (b) CPU memory addresses/buffers NOT checked for overlapping.
*
* (1) IEEE Std 1003.1, 2004 Edition, Section 'memcpy() : DESCRIPTION' states that
* "copying ... between objects that overlap ... is undefined".
*
* (3) MEM_VAL_COPY_xxx() macro's copy data values without regard to CPU word-aligned addresses.
* Thus for processors that require data word alignment, data words can be copied to/from any
* CPU address, word-aligned or not, without generating data-word-alignment exceptions/faults.
*
* (4) MEM_VAL_COPY_xxx() macro's are more efficient than MEM_VAL_COPY() macro & SHOULD be
* used whenever possible.
*
* (5) MEM_VAL_COPY_xxx() macro's are NOT atomic operations & MUST NOT be used on any non-static
* (i.e. volatile) variables, registers, hardware, etc.; without the caller of the macro's
* providing some form of additional protection (e.g. mutual exclusion).
*
* (6) MISRA-C 2004 Rule 5.2 states that "identifiers in an inner scope shall not use the same
* name as an indentifier in an outer scope, and therefore hide that identifier".
*
* Therefore, to avoid possible redeclaration of commonly-used loop counter identifier name,
* 'i', MEM_VAL_COPY() loop counter identifier name is prefixed with a single underscore.
*********************************************************************************************************
*/
#define MEM_VAL_COPY_08(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); } while (0)
#define MEM_VAL_COPY_16(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 1)); } while (0)
#define MEM_VAL_COPY_24(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 1)); \
(*(((CPU_INT08U *)(addr_dest)) + 2)) = (*(((CPU_INT08U *)(addr_src)) + 2)); } while (0)
#define MEM_VAL_COPY_32(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 1)); \
(*(((CPU_INT08U *)(addr_dest)) + 2)) = (*(((CPU_INT08U *)(addr_src)) + 2)); \
(*(((CPU_INT08U *)(addr_dest)) + 3)) = (*(((CPU_INT08U *)(addr_src)) + 3)); } while (0)
#define MEM_VAL_COPY(addr_dest, addr_src, val_size) do { \
CPU_SIZE_T _i; \
\
for (_i = 0; _i < (val_size); _i++) { \
(*(((CPU_INT08U *)(addr_dest)) +_i)) = (*(((CPU_INT08U *)(addr_src)) +_i)); \
} \
} while (0)
/*
*********************************************************************************************************
* FUNCTION PROTOTYPES
*********************************************************************************************************
*/
void Mem_Init ( void);
/* ------------------ MEM API FNCTS ------------------ */
void Mem_Clr ( void *pmem,
CPU_SIZE_T size);
void Mem_Set ( void *pmem,
CPU_INT08U data_val,
CPU_SIZE_T size);
void Mem_Copy ( void *pdest,
const void *psrc,
CPU_SIZE_T size);
void Mem_Move ( void *pdest,
const void *psrc,
CPU_SIZE_T size);
CPU_BOOLEAN Mem_Cmp (const void *p1_mem,
const void *p2_mem,
CPU_SIZE_T size);
/* ----------- MEM HEAP FNCTS (DEPRECATED) ------------ */
#if (LIB_MEM_CFG_HEAP_SIZE > 0u)
void *Mem_HeapAlloc ( CPU_SIZE_T size,
CPU_SIZE_T align,
CPU_SIZE_T *p_bytes_reqd,
LIB_ERR *p_err);
CPU_SIZE_T Mem_HeapGetSizeRem ( CPU_SIZE_T align,
LIB_ERR *p_err);
#endif
/* ------------------ MEM SEG FNCTS ------------------- */
void Mem_SegCreate (const CPU_CHAR *p_name,
MEM_SEG *p_seg,
CPU_ADDR seg_base_addr,
CPU_SIZE_T size,
CPU_SIZE_T padding_align,
LIB_ERR *p_err);
void Mem_SegClr ( MEM_SEG *p_seg,
LIB_ERR *p_err);
void *Mem_SegAlloc (const CPU_CHAR *p_name,
MEM_SEG *p_seg,
CPU_SIZE_T size,
LIB_ERR *p_err);
void *Mem_SegAllocExt (const CPU_CHAR *p_name,
MEM_SEG *p_seg,
CPU_SIZE_T size,
CPU_SIZE_T align,
CPU_SIZE_T *p_bytes_reqd,
LIB_ERR *p_err);
void *Mem_SegAllocHW (const CPU_CHAR *p_name,
MEM_SEG *p_seg,
CPU_SIZE_T size,
CPU_SIZE_T align,
CPU_SIZE_T *p_bytes_reqd,
LIB_ERR *p_err);
CPU_SIZE_T Mem_SegRemSizeGet ( MEM_SEG *p_seg,
CPU_SIZE_T align,
MEM_SEG_INFO *p_seg_info,
LIB_ERR *p_err);
#if (LIB_MEM_CFG_DBG_INFO_EN == DEF_ENABLED)
void Mem_OutputUsage ( void (*out_fnct) (CPU_CHAR *),
LIB_ERR *p_err);
#endif
/* -------- STATIC MEM POOL FNCTS (DEPRECATED) -------- */
void Mem_PoolCreate ( MEM_POOL *p_pool,
void *p_mem_base,
CPU_SIZE_T mem_size,
MEM_POOL_BLK_QTY blk_nbr,
CPU_SIZE_T blk_size,
CPU_SIZE_T blk_align,
CPU_SIZE_T *p_bytes_reqd,
LIB_ERR *p_err);
void Mem_PoolClr ( MEM_POOL *p_pool,
LIB_ERR *p_err);
void *Mem_PoolBlkGet ( MEM_POOL *p_pool,
CPU_SIZE_T size,
LIB_ERR *p_err);
void Mem_PoolBlkFree ( MEM_POOL *p_pool,
void *p_blk,
LIB_ERR *p_err);
MEM_POOL_BLK_QTY Mem_PoolBlkGetNbrAvail ( MEM_POOL *p_pool,
LIB_ERR *p_err);
/* -------------- DYNAMIC MEM POOL FNCTS -------------- */
void Mem_DynPoolCreate (const CPU_CHAR *p_name,
MEM_DYN_POOL *p_pool,
MEM_SEG *p_seg,
CPU_SIZE_T blk_size,
CPU_SIZE_T blk_align,
CPU_SIZE_T blk_qty_init,
CPU_SIZE_T blk_qty_max,
LIB_ERR *p_err);
void Mem_DynPoolCreateHW (const CPU_CHAR *p_name,
MEM_DYN_POOL *p_pool,
MEM_SEG *p_seg,
CPU_SIZE_T blk_size,
CPU_SIZE_T blk_align,
CPU_SIZE_T blk_qty_init,
CPU_SIZE_T blk_qty_max,
LIB_ERR *p_err);
void *Mem_DynPoolBlkGet ( MEM_DYN_POOL *p_pool,
LIB_ERR *p_err);
void Mem_DynPoolBlkFree ( MEM_DYN_POOL *p_pool,
void *p_blk,
LIB_ERR *p_err);
CPU_SIZE_T Mem_DynPoolBlkNbrAvailGet( MEM_DYN_POOL *p_pool,
LIB_ERR *p_err);
/*
*********************************************************************************************************
* CONFIGURATION ERRORS
*********************************************************************************************************
*/
#ifndef LIB_MEM_CFG_ARG_CHK_EXT_EN
#error "LIB_MEM_CFG_ARG_CHK_EXT_EN not #define'd in 'lib_cfg.h'"
#error " [MUST be DEF_DISABLED] "
#error " [ || DEF_ENABLED ] "
#elif ((LIB_MEM_CFG_ARG_CHK_EXT_EN != DEF_DISABLED) && \
(LIB_MEM_CFG_ARG_CHK_EXT_EN != DEF_ENABLED ))
#error "LIB_MEM_CFG_ARG_CHK_EXT_EN illegally #define'd in 'lib_cfg.h'"
#error " [MUST be DEF_DISABLED] "
#error " [ || DEF_ENABLED ] "
#endif
#ifndef LIB_MEM_CFG_OPTIMIZE_ASM_EN
#error "LIB_MEM_CFG_OPTIMIZE_ASM_EN not #define'd in 'lib_cfg.h'"
#error " [MUST be DEF_DISABLED] "
#error " [ || DEF_ENABLED ] "
#elif ((LIB_MEM_CFG_OPTIMIZE_ASM_EN != DEF_DISABLED) && \
(LIB_MEM_CFG_OPTIMIZE_ASM_EN != DEF_ENABLED ))
#error "LIB_MEM_CFG_OPTIMIZE_ASM_EN illegally #define'd in 'lib_cfg.h'"
#error " [MUST be DEF_DISABLED] "
#error " [ || DEF_ENABLED ] "
#endif
#ifndef LIB_MEM_CFG_HEAP_SIZE
#error "LIB_MEM_CFG_HEAP_SIZE not #define'd in 'lib_cfg.h'"
#error " [MUST be >= 0] "
#endif
#ifdef LIB_MEM_CFG_HEAP_BASE_ADDR
#if (LIB_MEM_CFG_HEAP_BASE_ADDR == 0x0)
#error "LIB_MEM_CFG_HEAP_BASE_ADDR illegally #define'd in 'lib_cfg.h'"
#error " [MUST be > 0x0] "
#endif
#endif
#if ((LIB_MEM_CFG_DBG_INFO_EN != DEF_DISABLED) && \
(LIB_MEM_CFG_DBG_INFO_EN != DEF_ENABLED ))
#error "LIB_MEM_CFG_DBG_INFO_EN illegally defined in 'lib_cfg.h'"
#error " [MUST be DEF_DISABLED] "
#error " [ || DEF_ENABLED ] "
#elif ((LIB_MEM_CFG_HEAP_SIZE == 0u) && \
(LIB_MEM_CFG_DBG_INFO_EN == DEF_ENABLED))
#error "LIB_MEM_CFG_HEAP_SIZE illegally defined in 'lib_cfg.h' "
#error " [MUST be > 0 when LIB_MEM_CFG_DBG_INFO_EN == DEF_ENABLED]"
#endif
/*
*********************************************************************************************************
* LIBRARY CONFIGURATION ERRORS
*********************************************************************************************************
*/
/* See 'lib_mem.h Note #2a'. */
#if (CPU_CORE_VERSION < 127u)
#error "CPU_CORE_VERSION [SHOULD be >= V1.27]"
#endif
/*
*********************************************************************************************************
* MODULE END
*
* Note(s) : (1) See 'lib_mem.h MODULE'.
*********************************************************************************************************
*/
#endif /* End of lib mem module include. */