OpenRTX/platform/targets/MD-3x0/platform.c

257 wiersze
7.0 KiB
C

/***************************************************************************
* Copyright (C) 2020 - 2025 by Federico Amedeo Izzo IU2NUO, *
* Niccolò Izzo IU2KIN *
* Silvano Seva IU2KWO *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 3 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, see <http://www.gnu.org/licenses/> *
***************************************************************************/
#include <peripherals/gpio.h>
#include <interfaces/nvmem.h>
#include <interfaces/platform.h>
#include <interfaces/delays.h>
#include <hwconfig.h>
#include <string.h>
#include <adc_stm32.h>
#include <calibInfo_MDx.h>
#include <toneGenerator_MDx.h>
#include <peripherals/rtc.h>
#include <interfaces/audio.h>
#include <gps_stm32.h>
#include <gps.h>
static hwInfo_t hwInfo;
void platform_init()
{
/* Configure GPIOs */
gpio_setMode(GREEN_LED, OUTPUT);
gpio_setMode(RED_LED, OUTPUT);
gpio_setMode(CH_SELECTOR_0, INPUT);
gpio_setMode(CH_SELECTOR_1, INPUT);
gpio_setMode(CH_SELECTOR_2, INPUT);
gpio_setMode(CH_SELECTOR_3, INPUT);
gpio_setMode(PTT_SW, INPUT_PULL_UP);
gpio_setMode(PTT_EXT, INPUT_PULL_UP);
gpio_setMode(AIN_VBAT, ANALOG);
gpio_setMode(AIN_VOLUME, ANALOG);
gpio_setMode(AIN_MIC, ANALOG);
gpio_setMode(AIN_RSSI, ANALOG);
#ifndef RUNNING_TESTSUITE
gpio_setMode(PWR_SW, OUTPUT);
gpio_setPin(PWR_SW);
#endif
/* Initialise ADC1, for vbat, RSSI, ... */
adcStm32_init(&adc1);
memset(&hwInfo, 0x00, sizeof(hwInfo));
nvm_init(); /* Initialise non volatile memory manager */
nvm_readHwInfo(&hwInfo); /* Load hardware information data */
toneGen_init(); /* Initialise tone generator */
rtc_init(); /* Initialise RTC */
audio_init(); /* Initialise audio management module */
}
void platform_terminate()
{
/* Shut down LEDs */
gpio_clearPin(GREEN_LED);
gpio_clearPin(RED_LED);
/* Shut down all the modules */
adcStm32_terminate(&adc1);
gpsStm32_terminate();
nvm_terminate();
toneGen_terminate();
audio_terminate();
/* Finally, remove power supply */
gpio_clearPin(PWR_SW);
}
uint16_t platform_getVbat()
{
/*
* Battery voltage is measured through an 1:3 voltage divider and
* adc1_getMeasurement returns a value in uV.
*/
uint32_t vbat = adc_getVoltage(&adc1, ADC_VBAT_CH) * 3;
return vbat / 1000;
}
uint8_t platform_getMicLevel()
{
/* Value from ADC is 12 bit wide: shift right by four to get 0 - 255 */
return adc_getRawSample(&adc1, ADC_VOX_CH) >> 4;
}
uint8_t platform_getVolumeLevel()
{
/*
* Volume level corresponds to an analog signal in the range 0 - 1650mV.
* Potentiometer has pseudo-logarithmic law, well described with two straight
* lines with a breakpoint around 270mV.
* Output value has range 0 - 255 with breakpoint at 150.
*/
uint32_t value = adc_getVoltage(&adc1, ADC_VOL_CH) / 1000;
uint32_t output;
if(value <= 270)
{
// First line: offset zero, slope 0.556
output = value;
output = (output * 556) / 1000;
}
else
{
// Second line: offset 270, slope 0.076
output = value - 270;
output = (output * 76) / 1000;
output += 150;
}
if(output > 255)
output = 255;
return output;
}
int8_t platform_getChSelector()
{
static const uint8_t rsPositions[] = { 11, 14, 10, 15, 6, 3, 7, 2, 12, 13,
9, 16, 5, 4, 8, 1 };
int pos = gpio_readPin(CH_SELECTOR_0)
| (gpio_readPin(CH_SELECTOR_1) << 1)
| (gpio_readPin(CH_SELECTOR_2) << 2)
| (gpio_readPin(CH_SELECTOR_3) << 3);
return rsPositions[pos];
}
bool platform_getPttStatus()
{
/* PTT line has a pullup resistor with PTT switch closing to ground */
uint8_t intPttStatus = gpio_readPin(PTT_SW);
uint8_t extPttStatus = gpio_readPin(PTT_EXT);
return ((intPttStatus == 0) || (extPttStatus == 0)) ? true : false;
}
bool platform_pwrButtonStatus()
{
/*
* When power knob is set to off, battery voltage measurement returns 0V.
* Here we set the threshold to 1V since, with knob in off position, there
* is always a bit of noise in the ADC measurement making the returned
* voltage not to be exactly zero.
*/
return (platform_getVbat() > 1000) ? true : false;
}
void platform_ledOn(led_t led)
{
switch(led)
{
case GREEN:
gpio_setPin(GREEN_LED);
break;
case RED:
gpio_setPin(RED_LED);
break;
default:
break;
}
}
void platform_ledOff(led_t led)
{
switch(led)
{
case GREEN:
gpio_clearPin(GREEN_LED);
break;
case RED:
gpio_clearPin(RED_LED);
break;
default:
break;
}
}
void platform_beepStart(uint16_t freq)
{
// calculate appropriate volume.
uint8_t vol = platform_getVolumeLevel();
// Since beeps have been requested, we do not want to have 0 volume.
// We also do not want the volume to be excessive.
if (vol < 10)
vol = 5;
if (vol > 176)
vol = 176;
toneGen_beepOn((float)freq, vol, 0);
}
void platform_beepStop()
{
toneGen_beepOff();
}
datetime_t platform_getCurrentTime()
{
return rtc_getTime();
}
void platform_setTime(datetime_t t)
{
rtc_setTime(t);
}
const hwInfo_t *platform_getHwInfo()
{
return &hwInfo;
}
const struct gpsDevice *platform_initGps()
{
const struct gpsDevice *dev = NULL;
// Turn on the GPS and check if there is voltage on the RXD pin
gpio_setMode(GPS_DATA, INPUT_PULL_DOWN);
gpio_setMode(GPS_EN, OUTPUT);
gpio_setPin(GPS_EN);
for(size_t i = 0; i < 50; i++) {
if(gpio_readPin(GPS_DATA) != 0) {
dev = &gps;
gpsStm32_init(9600);
break;
}
sleepFor(0, 1);
}
gpio_clearPin(GPS_EN);
gpio_setMode(GPS_DATA, ALTERNATE | ALTERNATE_FUNC(7));
return dev;
}