OpenRTX/platform/drivers/baseband/radio_GDx.cpp

380 wiersze
11 KiB
C++

/***************************************************************************
* Copyright (C) 2021 - 2023 by Federico Amedeo Izzo IU2NUO, *
* Niccolò Izzo IU2KIN *
* Frederik Saraci IU2NRO *
* Silvano Seva IU2KWO *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 3 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, see <http://www.gnu.org/licenses/> *
***************************************************************************/
#include <interfaces/radio.h>
#include <interfaces/nvmem.h>
#include <peripherals/gpio.h>
#include <calibInfo_GDx.h>
#include <hwconfig.h>
#include <algorithm>
#include <utils.h>
#include "radioUtils.h"
#include "HR_C6000.h"
#include "AT1846S.h"
static const rtxStatus_t *config; // Pointer to data structure with radio configuration
static gdxCalibration_t calData; // Calibration data
static Band currRxBand = BND_NONE; // Current band for RX
static Band currTxBand = BND_NONE; // Current band for TX
static uint16_t apcVoltage = 0; // APC voltage for TX output power control
static enum opstatus radioStatus; // Current operating status
static HR_C6000& C6000 = HR_C6000::instance(); // HR_C5000 driver
static AT1846S& at1846s = AT1846S::instance(); // AT1846S driver
void radio_init(const rtxStatus_t *rtxState)
{
config = rtxState;
radioStatus = OFF;
/*
* Configure RTX GPIOs
*/
gpio_setMode(VHF_LNA_EN, OUTPUT);
gpio_setMode(UHF_LNA_EN, OUTPUT);
gpio_setMode(VHF_PA_EN, OUTPUT);
gpio_setMode(UHF_PA_EN, OUTPUT);
gpio_setMode(RX_AUDIO_MUX, OUTPUT);
gpio_setMode(TX_AUDIO_MUX, OUTPUT);
gpio_clearPin(VHF_LNA_EN); // Turn VHF LNA off
gpio_clearPin(UHF_LNA_EN); // Turn UHF LNA off
gpio_clearPin(VHF_PA_EN); // Turn VHF PA off
gpio_clearPin(UHF_PA_EN); // Turn UHF PA off
gpio_clearPin(RX_AUDIO_MUX); // Audio out to HR_C6000
gpio_clearPin(TX_AUDIO_MUX); // Audio in to microphone
/*
* Enable and configure DAC for PA drive control
*/
SIM->SCGC6 |= SIM_SCGC6_DAC0_MASK;
DAC0->DAT[0].DATL = 0;
DAC0->DAT[0].DATH = 0;
DAC0->C0 |= DAC_C0_DACRFS_MASK // Reference voltage is Vref2
| DAC_C0_DACEN_MASK; // Enable DAC
/*
* Load calibration data
*/
nvm_readCalibData(&calData);
/*
* Enable and configure both AT1846S and HR_C6000, keep AF output disabled
* at power on.
*/
at1846s.init();
C6000.init();
radio_disableAfOutput();
}
void radio_terminate()
{
radioStatus = OFF;
radio_disableRtx();
C6000.terminate();
DAC0->DAT[0].DATL = 0;
DAC0->DAT[0].DATH = 0;
SIM->SCGC6 &= ~SIM_SCGC6_DAC0_MASK;
}
void radio_tuneVcxo(const int16_t vhfOffset, const int16_t uhfOffset)
{
//TODO: this part will be implemented in the future, when proved to be
// necessary.
(void) vhfOffset;
(void) uhfOffset;
}
void radio_setOpmode(const enum opmode mode)
{
switch(mode)
{
case OPMODE_FM:
gpio_setPin(RX_AUDIO_MUX); // Audio out to amplifier
gpio_clearPin(TX_AUDIO_MUX); // Audio in to microphone
at1846s.setOpMode(AT1846S_OpMode::FM);
break;
case OPMODE_DMR:
gpio_clearPin(RX_AUDIO_MUX); // Audio out to HR_C6000
gpio_setPin(TX_AUDIO_MUX); // Audio in from HR_C6000
at1846s.setOpMode(AT1846S_OpMode::DMR);
at1846s.setBandwidth(AT1846S_BW::_12P5);
at1846s.setTxDeviation(calData.data[currTxBand].mixGainNarrowband);
break;
default:
break;
}
}
bool radio_checkRxDigitalSquelch()
{
return at1846s.rxCtcssDetected();
}
void radio_enableAfOutput()
{
// TODO: AF output management for DMR mode
at1846s.unmuteRxOutput();
}
void radio_disableAfOutput()
{
at1846s.muteRxOutput();
}
void radio_enableRx()
{
gpio_clearPin(VHF_LNA_EN);
gpio_clearPin(UHF_LNA_EN);
gpio_clearPin(VHF_PA_EN);
gpio_clearPin(UHF_PA_EN);
DAC0->DAT[0].DATH = 0;
DAC0->DAT[0].DATL = 0;
if(currRxBand == BND_NONE) return;
// Adjust reference oscillator bias and offset.
C6000.writeCfgRegister(0x04, calData.data[currRxBand].mod2Offset);
C6000.setModOffset(calData.data[currRxBand].modBias);
// Set frequency and enable AT1846S RX
at1846s.setFrequency(config->rxFrequency);
at1846s.setFuncMode(AT1846S_FuncMode::RX);
// Enable RX LNA
if(currRxBand == BND_VHF)
{
gpio_setPin(VHF_LNA_EN);
}
else
{
gpio_setPin(UHF_LNA_EN);
}
radioStatus = RX;
if(config->rxToneEn)
{
at1846s.enableRxCtcss(config->rxTone);
}
}
void radio_enableTx()
{
if(config->txDisable == 1) return;
gpio_clearPin(VHF_LNA_EN);
gpio_clearPin(UHF_LNA_EN);
gpio_clearPin(VHF_PA_EN);
gpio_clearPin(UHF_PA_EN);
if(currTxBand == BND_NONE) return;
// Adjust reference oscillator bias and offset.
C6000.writeCfgRegister(0x04, calData.data[currTxBand].mod2Offset);
C6000.setModOffset(calData.data[currTxBand].modBias);
// Set frequency and enable AT1846S TX
at1846s.setFrequency(config->txFrequency);
at1846s.setFuncMode(AT1846S_FuncMode::TX);
// Set APC voltage
DAC0->DAT[0].DATH = (apcVoltage >> 8) & 0xFF;
DAC0->DAT[0].DATL = apcVoltage & 0xFF;
// Enable TX PA
if(currTxBand == BND_VHF)
{
gpio_setPin(VHF_PA_EN);
}
else
{
gpio_setPin(UHF_PA_EN);
}
if(config->txToneEn)
{
at1846s.enableTxCtcss(config->txTone);
}
if (config->toneEn)
{
at1846s.enableTone(17500);
}
radioStatus = TX;
}
void radio_disableRtx()
{
gpio_clearPin(VHF_LNA_EN);
gpio_clearPin(UHF_LNA_EN);
gpio_clearPin(VHF_PA_EN);
gpio_clearPin(UHF_PA_EN);
if(radioStatus == TX)
{
// Set PA drive voltage to 0V
DAC0->DAT[0].DATH = 0;
DAC0->DAT[0].DATL = 0;
}
at1846s.disableTone();
at1846s.disableCtcss();
at1846s.setFuncMode(AT1846S_FuncMode::OFF);
radioStatus = OFF;
}
void radio_updateConfiguration()
{
currRxBand = getBandFromFrequency(config->rxFrequency);
currTxBand = getBandFromFrequency(config->txFrequency);
if((currRxBand == BND_NONE) || (currTxBand == BND_NONE)) return;
/*
* Parameters dependent on RX frequency only
*/
const bandCalData_t *cal = &(calData.data[currRxBand]);
at1846s.setRxAudioGain(cal->rxDacGain, cal->rxVoiceGain);
if(config->bandwidth == BW_12_5)
{
at1846s.setNoise1Thresholds(cal->noise1_HighTsh_Nb, cal->noise1_LowTsh_Nb);
at1846s.setNoise2Thresholds(cal->noise2_HighTsh_Nb, cal->noise2_LowTsh_Nb);
at1846s.setRssiThresholds(cal->rssi_HighTsh_Nb, cal->rssi_LowTsh_Nb);
}
else
{
at1846s.setNoise1Thresholds(cal->noise1_HighTsh_Wb, cal->noise1_LowTsh_Wb);
at1846s.setNoise2Thresholds(cal->noise2_HighTsh_Wb, cal->noise2_LowTsh_Wb);
at1846s.setRssiThresholds(cal->rssi_HighTsh_Wb, cal->rssi_LowTsh_Wb);
}
C6000.writeCfgRegister(0x37, cal->digAudioGain); // DACDATA gain
uint8_t sqlTresh = 0;
if(currRxBand == BND_VHF)
{
sqlTresh = interpCalParameter(config->rxFrequency, calData.vhfCalPoints,
cal->analogSqlThresh, 8);
}
else
{
sqlTresh = interpCalParameter(config->rxFrequency, calData.uhfCalPoints,
cal->analogSqlThresh, 8);
}
at1846s.setAnalogSqlThresh(sqlTresh);
/*
* Parameters dependent on TX frequency only
*/
at1846s.setPgaGain(calData.data[currTxBand].PGA_gain);
at1846s.setMicGain(calData.data[currTxBand].analogMicGain);
at1846s.setAgcGain(calData.data[currTxBand].rxAGCgain);
at1846s.setPaDrive(calData.data[currTxBand].PA_drv);
uint8_t mod1Amp = 0;
uint8_t txpwr_lo = 0;
uint8_t txpwr_hi = 0;
if(currTxBand == BND_VHF)
{
/* VHF band */
txpwr_lo = interpCalParameter(config->txFrequency, calData.vhfCalPoints,
calData.data[currTxBand].txLowPower, 8);
txpwr_hi = interpCalParameter(config->txFrequency, calData.vhfCalPoints,
calData.data[currTxBand].txHighPower, 8);
mod1Amp = interpCalParameter(config->txFrequency, calData.vhfCalPoints,
cal->mod1Amplitude, 8);
}
else
{
/* UHF band */
txpwr_lo = interpCalParameter(config->txFrequency, calData.uhfPwrCalPoints,
calData.data[currTxBand].txLowPower, 16);
txpwr_hi = interpCalParameter(config->txFrequency, calData.uhfPwrCalPoints,
calData.data[currTxBand].txHighPower, 16);
mod1Amp = interpCalParameter(config->txFrequency, calData.uhfCalPoints,
cal->mod1Amplitude, 8);
}
C6000.setModAmplitude(0, mod1Amp);
// Calculate APC voltage, constraining output power between 1W and 5W.
float power = std::max(std::min(config->txPower, 5.0f), 1.0f);
float pwrHi = static_cast< float >(txpwr_hi);
float pwrLo = static_cast< float >(txpwr_lo);
float apc = pwrLo + (pwrHi - pwrLo)/4.0f*(power - 1.0f);
apcVoltage = static_cast< uint16_t >(apc) * 16;
// Set bandwidth, only for analog FM mode
if(config->opMode == OPMODE_FM)
{
switch(config->bandwidth)
{
case BW_12_5:
at1846s.setBandwidth(AT1846S_BW::_12P5);
at1846s.setTxDeviation(calData.data[currTxBand].mixGainNarrowband);
break;
case BW_20:
case BW_25:
at1846s.setBandwidth(AT1846S_BW::_25);
at1846s.setTxDeviation(calData.data[currTxBand].mixGainWideband);
break;
default:
break;
}
}
/*
* Update VCO frequency and tuning parameters if current operating status
* is different from OFF.
* This is done by calling again the corresponding functions, which is safe
* to do and avoids code duplication.
*/
if(radioStatus == RX) radio_enableRx();
if(radioStatus == TX) radio_enableTx();
}
float radio_getRssi()
{
return static_cast< float >(at1846s.readRSSI());
}
enum opstatus radio_getStatus()
{
return radioStatus;
}