New radio driver for GDx. Renamed some entries in GDx calibration data structure

replace/c5d365debafa6f7d935ae069a0ad6394785373cc
Silvano Seva 2021-05-22 12:11:30 +02:00
rodzic 87d9b733e6
commit 2d517d5bf8
5 zmienionych plików z 368 dodań i 33 usunięć

Wyświetl plik

@ -107,11 +107,10 @@ gdx_src = ['platform/drivers/NVM/W25Qx.c',
'platform/drivers/NVM/nvmem_GDx.c',
'platform/drivers/ADC/ADC0_GDx.c',
'platform/drivers/backlight/backlight_GDx.c',
'platform/drivers/baseband/radio_GDx.c',
# 'platform/drivers/baseband/AT1846S_wrapper.cpp',
# 'platform/drivers/baseband/AT1846S_GDx.cpp',
# 'platform/drivers/baseband/HR_C6000.c',
# 'platform/drivers/baseband/interfaces_GDx.c',
'platform/drivers/baseband/radio_GDx.cpp',
'platform/drivers/baseband/HR_Cx000.cpp',
'platform/drivers/baseband/AT1846S_GDx.cpp',
'platform/drivers/baseband/HR_C6000_GDx.cpp',
'platform/drivers/display/UC1701_GDx.c',
'platform/drivers/keyboard/keyboard_GDx.c',
'platform/drivers/audio/audio_GDx.c']

Wyświetl plik

@ -33,7 +33,7 @@ typedef struct
uint16_t _DigitalTxGainNarrowband; // 0x002 IF Gain, TX Fine
uint16_t _DigitalRxGainWideband; // 0x004 IF Gain, RX Coarse
uint16_t _DigitalTxGainWideband; // 0x006 IF Gain, TX Coarse
uint16_t mod1Bias; // 0x008
uint16_t modBias; // 0x008
uint8_t mod2Offset; // 0x00A
uint8_t txLowPower[16]; // 0x00B - 0x02A
uint8_t txHighPower[16]; // 0x00B - 0x02A
@ -58,7 +58,7 @@ typedef struct
uint8_t mod1Amplitude[8]; // 0x055
uint8_t dacDataRange; // 0x05D
uint8_t digAudioGain; // 0x05D
uint8_t txDev_DTMF; // 0x05E
uint8_t txDev_tone; // 0x05F
@ -74,8 +74,8 @@ typedef struct
uint16_t mixGainWideband; // 0x068
uint16_t mixGainNarrowband; // 0x06A
uint8_t rxAudioGainWideband; // 0x06C
uint8_t rxAudioGainNarrowband; // 0x06D
uint8_t rxDacGain; // 0x06C
uint8_t rxVoiceGain; // 0x06D
}
bandCalData_t;
@ -84,7 +84,7 @@ typedef struct
bandCalData_t data[2]; // Calibration data for VHF (index 0) and UHF (index 1) bands
freq_t vhfCalPoints[8]; // VHF calibration points for both TX power and mod1Amplitude
freq_t uhfPwrCalPoints[16]; // UHF calibration points for TX power
freq_t uhfMod1CalPoints[8]; // UHF calibration points for mod1Amplitude
freq_t uhfCalPoints[8]; // UHF calibration points for mod1Amplitude
}
gdxCalibration_t;

Wyświetl plik

@ -69,7 +69,7 @@ uint32_t _bcd2bin(uint32_t bcd)
*/
void _loadBandCalData(uint32_t baseAddr, bandCalData_t *cal)
{
W25Qx_readData(baseAddr + 0x08, &(cal->mod1Bias), 2);
W25Qx_readData(baseAddr + 0x08, &(cal->modBias), 2);
W25Qx_readData(baseAddr + 0x0A, &(cal->mod2Offset), 1);
W25Qx_readData(baseAddr + 0x3F, cal->analogSqlThresh, 8);
W25Qx_readData(baseAddr + 0x47, &(cal->noise1_HighTsh_Wb), 1);
@ -87,7 +87,7 @@ void _loadBandCalData(uint32_t baseAddr, bandCalData_t *cal)
W25Qx_readData(baseAddr + 0x53, &(cal->RSSILowerThreshold), 1);
W25Qx_readData(baseAddr + 0x54, &(cal->RSSIUpperThreshold), 1);
W25Qx_readData(baseAddr + 0x55, cal->mod1Amplitude, 8);
W25Qx_readData(baseAddr + 0x5D, &(cal->dacDataRange), 1);
W25Qx_readData(baseAddr + 0x5D, &(cal->digAudioGain), 1);
W25Qx_readData(baseAddr + 0x5E, &(cal->txDev_DTMF), 1);
W25Qx_readData(baseAddr + 0x5F, &(cal->txDev_tone), 1);
W25Qx_readData(baseAddr + 0x60, &(cal->txDev_CTCSS_wb), 1);
@ -100,8 +100,8 @@ void _loadBandCalData(uint32_t baseAddr, bandCalData_t *cal)
W25Qx_readData(baseAddr + 0x67, &(cal->rxAGCgain), 1);
W25Qx_readData(baseAddr + 0x68, &(cal->mixGainWideband), 2);
W25Qx_readData(baseAddr + 0x6A, &(cal->mixGainNarrowband), 2);
W25Qx_readData(baseAddr + 0x6C, &(cal->rxAudioGainWideband), 1);
W25Qx_readData(baseAddr + 0x6D, &(cal->rxAudioGainNarrowband), 1);
W25Qx_readData(baseAddr + 0x6C, &(cal->rxDacGain), 1);
W25Qx_readData(baseAddr + 0x6D, &(cal->rxVoiceGain), 1);
uint8_t txPwr[32] = {0};
W25Qx_readData(baseAddr + 0x0B, txPwr, 32);
@ -161,7 +161,7 @@ void nvm_readCalibData(void *buf)
for(uint8_t i = 0; i < 16; i++)
{
uint8_t ii = i/2;
calib->uhfMod1CalPoints[ii] = 405000000 + (5000000 * ii);
calib->uhfCalPoints[ii] = 405000000 + (5000000 * ii);
calib->uhfPwrCalPoints[i] = 400000000 + (5000000 * i);
}
@ -183,9 +183,9 @@ void nvm_loadHwInfo(hwInfo_t *info)
int nvm_readVFOChannelData(channel_t *channel)
{
gdxChannel_t chData;
AT24Cx_readData(vfoChannelBaseAddr, ((uint8_t *) &chData), sizeof(gdxChannel_t));
// Copy data to OpenRTX channel_t
channel->mode = chData.channel_mode;
channel->bandwidth = chData.bandwidth;
@ -256,7 +256,7 @@ int nvm_readChannelData(channel_t *channel, uint16_t pos)
{
if((pos <= 0) || (pos > maxNumChannels))
return -1;
// Channels are organized in 128-channel banks
uint8_t bank_num = (pos - 1) / 128;
// Note: pos is 1-based because an empty slot in a zone contains index 0
@ -374,15 +374,15 @@ int nvm_readChannelData(channel_t *channel, uint16_t pos)
int nvm_readZoneData(zone_t *zone, uint16_t pos)
{
if((pos <= 0) || (pos > maxNumZones)) return -1;
if((pos <= 0) || (pos > maxNumZones)) return -1;
// zone number is 1-based to be consistent with channels
// Convert to 0-based index to fetch data from flash
uint16_t index = pos - 1;
// ### Read zone bank bitmap ###
uint8_t bitmap[32];
AT24Cx_readData(zoneBaseAddr, ((uint8_t *) &bitmap), sizeof(bitmap));
uint8_t bitmap_byte = index / 8;
uint8_t bitmap_bit = index % 8;
// The zone is marked not valid in the bitmap
@ -393,16 +393,16 @@ int nvm_readZoneData(zone_t *zone, uint16_t pos)
AT24Cx_readData(zoneAddr, ((uint8_t *) &zoneData), sizeof(gdxZone_t));
// Check if zone is empty
if(wcslen((wchar_t *) zoneData.name) == 0) return -1;
if(wcslen((wchar_t *) zoneData.name) == 0) return -1;
memcpy(zone->name, zoneData.name, sizeof(zoneData.name));
// Terminate string with 0x00 instead of 0xFF
_addStringTerminator(zone->name, sizeof(zoneData.name));
// Copy zone channel indexes
for(uint16_t i = 0; i < 16; i++)
{
{
zone->member[i] = zoneData.member[i];
}
}
return 0;
}
@ -421,7 +421,7 @@ int nvm_readContactData(contact_t *contact, uint16_t pos)
// Check if contact is empty
if(wcslen((wchar_t *) contactData.name) == 0) return -1;
// Copy contact name
memcpy(contact->name, contactData.name, sizeof(contactData.name));
// Terminate string with 0x00 instead of 0xFF

Wyświetl plik

@ -185,7 +185,7 @@ public:
*/
inline void setMicGain(const uint8_t gain)
{
maskSetRegister(0x41, 0x007F, ((uint16_t) gain));
maskSetRegister(0x41, 0x007F, static_cast< uint16_t >(gain));
}
/**
@ -210,14 +210,15 @@ public:
/**
* Set audio gain for recepion.
* @param gainWb: gain for wideband Rx (25kHz).
* @param gainNb: gain for narrowband Rx (12.5kHz).
* @param analogDacGain: "analog DAC gain" in AT1846S manual.
* @param digitalGain: "digital voice gain" in AT1846S manual.
*/
inline void setRxAudioGain(const uint8_t gainWb, const uint8_t gainNb)
inline void setRxAudioGain(const uint8_t analogDacGain,
const uint8_t digitalGain)
{
uint16_t value = (gainWb & 0x0F) << 4;
uint16_t value = (analogDacGain & 0x0F) << 4;
maskSetRegister(0x44, 0x00F0, value);
maskSetRegister(0x44, 0x000F, ((uint16_t) gainNb));
maskSetRegister(0x44, 0x000F, static_cast< uint16_t >(digitalGain));
}
/**
@ -269,7 +270,7 @@ public:
*/
inline void setAnalogSqlThresh(const uint8_t thresh)
{
i2c_writeReg16(0x49, ((uint16_t) thresh));
i2c_writeReg16(0x49, static_cast< uint16_t >(thresh));
}
private:

Wyświetl plik

@ -0,0 +1,335 @@
/***************************************************************************
* Copyright (C) 2021 by Federico Amedeo Izzo IU2NUO, *
* Niccolò Izzo IU2KIN *
* Frederik Saraci IU2NRO *
* Silvano Seva IU2KWO *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 3 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, see <http://www.gnu.org/licenses/> *
***************************************************************************/
#include <interfaces/platform.h>
#include <interfaces/radio.h>
#include <interfaces/gpio.h>
#include <calibInfo_GDx.h>
#include <calibUtils.h>
#include <hwconfig.h>
#include <algorithm>
#include "radioUtils.h"
#include "HR_C6000.h"
#include "AT1846S.h"
const gdxCalibration_t *calData; // Pointer to calibration data
const rtxStatus_t *config; // Pointer to data structure with radio configuration
Band currRxBand = BND_NONE; // Current band for RX
Band currTxBand = BND_NONE; // Current band for TX
uint16_t apcVoltage = 0; // APC voltage for TX output power control
enum opstatus radioStatus; // Current operating status
HR_C6000& C6000 = HR_C6000::instance(); // HR_C5000 driver
AT1846S& at1846s = AT1846S::instance(); // AT1846S driver
void radio_init(const rtxStatus_t *rtxState)
{
/*
* Load calibration data
*/
calData = reinterpret_cast< const gdxCalibration_t * >(platform_getCalibrationData());
config = rtxState;
radioStatus = OFF;
/*
* Configure RTX GPIOs
*/
gpio_setMode(VHF_LNA_EN, OUTPUT);
gpio_setMode(UHF_LNA_EN, OUTPUT);
gpio_setMode(VHF_PA_EN, OUTPUT);
gpio_setMode(UHF_PA_EN, OUTPUT);
gpio_setMode(RX_AUDIO_MUX, OUTPUT);
gpio_setMode(TX_AUDIO_MUX, OUTPUT);
gpio_clearPin(VHF_LNA_EN); // Turn VHF LNA off
gpio_clearPin(UHF_LNA_EN); // Turn UHF LNA off
gpio_clearPin(VHF_PA_EN); // Turn VHF PA off
gpio_clearPin(UHF_PA_EN); // Turn UHF PA off
gpio_clearPin(RX_AUDIO_MUX); // Audio out to HR_C6000
gpio_clearPin(TX_AUDIO_MUX); // Audio in to microphone
/*
* Enable and configure DAC for PA drive control
*/
SIM->SCGC6 |= SIM_SCGC6_DAC0_MASK;
DAC0->DAT[0].DATL = 0;
DAC0->DAT[0].DATH = 0;
DAC0->C0 |= DAC_C0_DACRFS_MASK // Reference voltage is Vref2
| DAC_C0_DACEN_MASK; // Enable DAC
/*
* Enable and configure both AT1846S and HR_C6000
*/
at1846s.init();
C6000.init();
}
void radio_terminate()
{
radioStatus = OFF;
radio_disableRtx();
C6000.terminate();
DAC0->DAT[0].DATL = 0;
DAC0->DAT[0].DATH = 0;
SIM->SCGC6 &= ~SIM_SCGC6_DAC0_MASK;
}
void radio_setOpmode(const enum opmode mode)
{
switch(mode)
{
case FM:
gpio_setPin(RX_AUDIO_MUX); // Audio out to amplifier
gpio_clearPin(TX_AUDIO_MUX); // Audio in to microphone
at1846s.setOpMode(AT1846S_OpMode::FM);
break;
case DMR:
gpio_clearPin(RX_AUDIO_MUX); // Audio out to HR_C6000
gpio_setPin(TX_AUDIO_MUX); // Audio in from HR_C6000
at1846s.setOpMode(AT1846S_OpMode::DMR);
break;
default:
break;
}
}
bool radio_checkRxDigitalSquelch()
{
return true;
}
void radio_enableRx()
{
gpio_clearPin(VHF_LNA_EN);
gpio_clearPin(UHF_LNA_EN);
gpio_clearPin(VHF_PA_EN);
gpio_clearPin(UHF_PA_EN);
DAC0->DAT[0].DATH = 0;
DAC0->DAT[0].DATL = 0;
if(currRxBand == BND_NONE) return;
// Adjust reference oscillator bias and offset.
C6000.writeCfgRegister(0x04, calData->data[currRxBand].mod2Offset);
C6000.setModOffset(calData->data[currRxBand].modBias);
// Set frequency and enable AT1846S RX
at1846s.setFrequency(config->rxFrequency);
at1846s.setFuncMode(AT1846S_FuncMode::RX);
// Enable RX LNA
if(currRxBand == BND_VHF)
{
gpio_setPin(VHF_LNA_EN);
}
else
{
gpio_setPin(UHF_LNA_EN);
}
radioStatus = RX;
}
void radio_enableTx()
{
if(config->txDisable == 1) return;
gpio_clearPin(VHF_LNA_EN);
gpio_clearPin(UHF_LNA_EN);
gpio_clearPin(VHF_PA_EN);
gpio_clearPin(UHF_PA_EN);
if(currTxBand == BND_NONE) return;
// Adjust reference oscillator bias and offset.
C6000.writeCfgRegister(0x04, calData->data[currTxBand].mod2Offset);
C6000.setModOffset(calData->data[currTxBand].modBias);
// Set frequency and enable AT1846S TX
at1846s.setFrequency(config->txFrequency);
at1846s.setFuncMode(AT1846S_FuncMode::TX);
// Set APC voltage
DAC0->DAT[0].DATH = (apcVoltage >> 8) & 0xFF;
DAC0->DAT[0].DATL = apcVoltage & 0xFF;
// Enable TX PA
if(currTxBand == BND_VHF)
{
gpio_setPin(VHF_PA_EN);
}
else
{
gpio_setPin(UHF_PA_EN);
}
if(config->txToneEn)
{
at1846s.enableTxCtcss(config->txTone);
}
radioStatus = TX;
}
void radio_disableRtx()
{
gpio_clearPin(VHF_LNA_EN);
gpio_clearPin(UHF_LNA_EN);
gpio_clearPin(VHF_PA_EN);
gpio_clearPin(UHF_PA_EN);
if(radioStatus == TX)
{
at1846s.disableCtcss();
DAC0->DAT[0].DATH = 0;
DAC0->DAT[0].DATL = 0;
}
at1846s.setFuncMode(AT1846S_FuncMode::OFF);
radioStatus = OFF;
}
void radio_updateConfiguration()
{
currRxBand = getBandFromFrequency(config->rxFrequency);
currTxBand = getBandFromFrequency(config->txFrequency);
if((currRxBand == BND_NONE) || (currTxBand == BND_NONE)) return;
/*
* Parameters dependent on RX frequency only
*/
const bandCalData_t *cal = &(calData->data[currRxBand]);
at1846s.setRxAudioGain(cal->rxDacGain, cal->rxVoiceGain);
if(config->bandwidth == BW_12_5)
{
at1846s.setNoise1Thresholds(cal->noise1_HighTsh_Nb, cal->noise1_LowTsh_Nb);
at1846s.setNoise2Thresholds(cal->noise2_HighTsh_Nb, cal->noise2_LowTsh_Nb);
at1846s.setRssiThresholds(cal->rssi_HighTsh_Nb, cal->rssi_LowTsh_Nb);
}
else
{
at1846s.setNoise1Thresholds(cal->noise1_HighTsh_Wb, cal->noise1_LowTsh_Wb);
at1846s.setNoise2Thresholds(cal->noise2_HighTsh_Wb, cal->noise2_LowTsh_Wb);
at1846s.setRssiThresholds(cal->rssi_HighTsh_Wb, cal->rssi_LowTsh_Wb);
}
C6000.writeCfgRegister(0x37, cal->digAudioGain); // DACDATA gain
uint8_t sqlTresh = 0;
if(currRxBand == BND_VHF)
{
sqlTresh = interpCalParameter(config->rxFrequency, calData->vhfCalPoints,
cal->analogSqlThresh, 8);
}
else
{
sqlTresh = interpCalParameter(config->rxFrequency, calData->uhfCalPoints,
cal->analogSqlThresh, 8);
}
at1846s.setAnalogSqlThresh(sqlTresh);
/*
* Parameters dependent on TX frequency only
*/
at1846s.setPgaGain(calData->data[currTxBand].PGA_gain);
at1846s.setMicGain(calData->data[currTxBand].analogMicGain);
at1846s.setAgcGain(calData->data[currTxBand].rxAGCgain);
at1846s.setPaDrive(calData->data[currTxBand].PA_drv);
uint8_t mod1Amp = 0;
uint8_t txpwr_lo = 0;
uint8_t txpwr_hi = 0;
if(currTxBand == BND_VHF)
{
/* VHF band */
txpwr_lo = interpCalParameter(config->txFrequency, calData->vhfCalPoints,
calData->data[currTxBand].txLowPower, 8);
txpwr_hi = interpCalParameter(config->txFrequency, calData->vhfCalPoints,
calData->data[currTxBand].txHighPower, 8);
mod1Amp = interpCalParameter(config->txFrequency, calData->vhfCalPoints,
cal->mod1Amplitude, 8);
}
else
{
/* UHF band */
txpwr_lo = interpCalParameter(config->txFrequency, calData->uhfPwrCalPoints,
calData->data[currTxBand].txLowPower, 16);
txpwr_hi = interpCalParameter(config->txFrequency, calData->uhfPwrCalPoints,
calData->data[currTxBand].txHighPower, 16);
mod1Amp = interpCalParameter(config->txFrequency, calData->uhfCalPoints,
cal->mod1Amplitude, 8);
}
C6000.setModAmplitude(0, mod1Amp);
// Calculate APC voltage, constraining output power between 1W and 5W.
float power = std::max(std::min(config->txPower, 5.0f), 1.0f);
float pwrHi = static_cast< float >(txpwr_hi);
float pwrLo = static_cast< float >(txpwr_lo);
float apc = pwrLo + (pwrHi - pwrLo)/4.0f*(power - 1.0f);
apcVoltage = static_cast< uint16_t >(apc) * 16;
// Set bandwidth and TX deviation, force 12.5kHz for DMR mode
if((config->bandwidth == BW_12_5) || (config->opMode == DMR))
{
at1846s.setBandwidth(AT1846S_BW::_12P5);
at1846s.setTxDeviation(calData->data[currTxBand].mixGainNarrowband);
}
else
{
at1846s.setBandwidth(AT1846S_BW::_25);
at1846s.setTxDeviation(calData->data[currTxBand].mixGainWideband);
}
/*
* Update VCO frequency and tuning parameters if current operating status
* is different from OFF.
* This is done by calling again the corresponding functions, which is safe
* to do and avoids code duplication.
*/
if(radioStatus == RX) radio_enableRx();
if(radioStatus == TX) radio_enableTx();
}
float radio_getRssi()
{
return static_cast< float >(at1846s.readRSSI());
}
enum opstatus radio_getStatus()
{
return radioStatus;
}