OpenDroneMap-WebODM/app/raster_utils.py

286 wiersze
10 KiB
Python

import rasterio
import re
import logging
import os
import subprocess
import numpy as np
import numexpr as ne
from rasterio.enums import ColorInterp
from rio_tiler.utils import has_alpha_band, linear_rescale
from rio_tiler.colormap import cmap as colormap, apply_cmap
from rio_tiler.errors import InvalidColorMapName
from app.api.hsvblend import hsv_blend
from app.api.hillshade import LightSource
from rio_tiler.io import COGReader
from rasterio.warp import calculate_default_transform, reproject, Resampling
logger = logging.getLogger('app.logger')
ZOOM_EXTRA_LEVELS = 3
def extension_for_export_format(export_format):
extensions = {
'gtiff': 'tif',
'gtiff-rgb': 'tif',
}
return extensions.get(export_format, export_format)
def export_raster(input, output, **opts):
epsg = opts.get('epsg')
expression = opts.get('expression')
export_format = opts.get('format')
rescale = opts.get('rescale')
color_map = opts.get('color_map')
hillshade = opts.get('hillshade')
asset_type = opts.get('asset_type')
name = opts.get('name', 'raster') # KMZ specific
dem = asset_type in ['dsm', 'dtm']
with COGReader(input) as ds_src:
src = ds_src.dataset
profile = src.meta.copy()
# Output format
driver = "GTiff"
compress = None
max_bands = 9999
with_alpha = True
rgb = False
indexes = src.indexes
output_raster = output
jpg_background = 255 # white
# KMZ is special, we just export it as PNG with EPSG:4326
# and then call GDAL to tile/package it
kmz = export_format == "kmz"
if kmz:
export_format = "png"
epsg = 4326
path_base, _ = os.path.splitext(output)
output_raster = path_base + ".png"
if export_format == "jpg":
driver = "JPEG"
profile.update(quality=90)
band_count = 3
with_alpha = False
rgb = True
elif export_format == "png":
driver = "PNG"
band_count = 4
rgb = True
elif export_format == "gtiff-rgb":
compress = "JPEG"
profile.update(jpeg_quality=90)
band_count = 4
rgb = True
else:
compress = "DEFLATE"
band_count = src.count
if compress is not None:
profile.update(compress=compress)
profile.update(predictor=2 if compress == "DEFLATE" else 1)
if rgb and rescale is None:
# Compute min max
nodata = None
if asset_type == 'orthophoto':
nodata = 0
md = ds_src.metadata(pmin=2.0, pmax=98.0, hist_options={"bins": 255}, nodata=nodata)
rescale = [md['statistics']['1']['min'], md['statistics']['1']['max']]
ci = src.colorinterp
if rgb and expression is None:
# More than 4 bands?
if len(ci) > 4:
# Try to find RGBA band order
if ColorInterp.red in ci and \
ColorInterp.green in ci and \
ColorInterp.blue in ci and \
ColorInterp.alpha in ci:
indexes = (ci.index(ColorInterp.red) + 1,
ci.index(ColorInterp.green) + 1,
ci.index(ColorInterp.blue) + 1,
ci.index(ColorInterp.alpha) + 1)
if ColorInterp.alpha in ci:
mask = src.read(ci.index(ColorInterp.alpha) + 1)
else:
mask = src.dataset_mask()
cmap = None
if color_map:
try:
cmap = colormap.get(color_map)
except InvalidColorMapName:
logger.warning("Invalid colormap {}".format(color_map))
def process(arr, skip_rescale=False, skip_alpha=False, skip_type=False):
if not skip_rescale and rescale is not None:
arr = linear_rescale(arr, in_range=rescale)
if not skip_alpha and not with_alpha:
arr[mask==0] = jpg_background
if not skip_type and rgb and arr.dtype != np.uint8:
arr = arr.astype(np.uint8)
return arr
def update_rgb_colorinterp(dst):
if with_alpha:
dst.colorinterp = [ColorInterp.red, ColorInterp.green, ColorInterp.blue, ColorInterp.alpha]
else:
dst.colorinterp = [ColorInterp.red, ColorInterp.green, ColorInterp.blue]
profile.update(driver=driver, count=band_count)
if rgb:
profile.update(dtype=rasterio.uint8)
if dem and rgb and profile.get('nodata') is not None:
profile.update(nodata=None)
# Define write band function
# Reprojection needed?
if src.crs is not None and epsg is not None and src.crs.to_epsg() != epsg:
dst_crs = "EPSG:{}".format(epsg)
transform, width, height = calculate_default_transform(
src.crs, dst_crs, src.width, src.height, *src.bounds)
profile.update(
crs=dst_crs,
transform=transform,
width=width,
height=height
)
def write_band(arr, dst, band_num):
reproject(source=arr,
destination=rasterio.band(dst, band_num),
src_transform=src.transform,
src_crs=src.crs,
dst_transform=transform,
dst_crs=dst_crs,
resampling=Resampling.nearest)
else:
# No reprojection needed
def write_band(arr, dst, band_num):
dst.write(arr, band_num)
if expression is not None:
# Apply band math
if rgb:
profile.update(dtype=rasterio.uint8, count=band_count)
else:
profile.update(dtype=rasterio.float32, count=1, nodata=-9999)
bands_names = ["b{}".format(b) for b in tuple(sorted(set(re.findall(r"b(?P<bands>[0-9]{1,2})", expression))))]
rgb_expr = expression.split(",")
indexes = tuple([int(b.replace("b", "")) for b in bands_names])
alpha_index = None
if has_alpha_band(src):
try:
alpha_index = src.colorinterp.index(ColorInterp.alpha) + 1
indexes += (alpha_index, )
except ValueError:
pass
data = src.read(indexes=indexes, out_dtype=np.float32)
arr = dict(zip(bands_names, data))
arr = np.array([np.nan_to_num(ne.evaluate(bloc.strip(), local_dict=arr)) for bloc in rgb_expr])
# Set nodata values
index_band = arr[0]
if alpha_index is not None:
# -1 is the last band = alpha
index_band[data[-1] == 0] = -9999
# Remove infinity values
index_band[index_band>1e+30] = -9999
index_band[index_band<-1e+30] = -9999
# Make sure this is float32
arr = arr.astype(np.float32)
with rasterio.open(output_raster, 'w', **profile) as dst:
# Apply colormap?
if rgb and cmap is not None:
rgb_data, _ = apply_cmap(process(arr, skip_alpha=True), cmap)
band_num = 1
for b in rgb_data:
write_band(process(b, skip_rescale=True), dst, band_num)
band_num += 1
if with_alpha:
write_band(mask, dst, band_num)
update_rgb_colorinterp(dst)
else:
# Raw
write_band(process(arr)[0], dst, 1)
elif dem:
# Apply hillshading, colormaps to elevation
with rasterio.open(output_raster, 'w', **profile) as dst:
arr = src.read()
intensity = None
if hillshade is not None and hillshade > 0:
delta_scale = (ZOOM_EXTRA_LEVELS + 1) * 4
dx = src.meta["transform"][0] * delta_scale
dy = -src.meta["transform"][4] * delta_scale
ls = LightSource(azdeg=315, altdeg=45)
intensity = ls.hillshade(arr[0], dx=dx, dy=dy, vert_exag=hillshade)
intensity = intensity * 255.0
# Apply colormap?
if rgb and cmap is not None:
rgb_data, _ = apply_cmap(process(arr, skip_alpha=True), cmap)
if intensity is not None:
rgb_data = hsv_blend(rgb_data, intensity)
band_num = 1
for b in rgb_data:
write_band(process(b, skip_rescale=True), dst, band_num)
band_num += 1
if with_alpha:
write_band(mask, dst, band_num)
update_rgb_colorinterp(dst)
else:
# Raw
write_band(process(arr)[0], dst, 1)
else:
# Copy bands as-is
with rasterio.open(output_raster, 'w', **profile) as dst:
band_num = 1
for idx in indexes:
ci = src.colorinterp[idx - 1]
arr = src.read(idx)
if ci == ColorInterp.alpha:
if with_alpha:
write_band(arr, dst, band_num)
band_num += 1
else:
write_band(process(arr), dst, band_num)
band_num += 1
new_ci = [src.colorinterp[idx - 1] for idx in indexes]
if not with_alpha:
new_ci = [ci for ci in new_ci if ci != ColorInterp.alpha]
dst.colorinterp = new_ci
if kmz:
subprocess.check_output(["gdal_translate", "-of", "KMLSUPEROVERLAY",
"-co", "Name={}".format(name),
"-co", "FORMAT=PNG", output_raster, output])