kopia lustrzana https://github.com/OpenDroneMap/WebODM
452 wiersze
17 KiB
Python
452 wiersze
17 KiB
Python
import json
|
|
import numpy
|
|
from rasterio.enums import ColorInterp
|
|
import urllib
|
|
import os
|
|
from django.http import HttpResponse
|
|
from rio_tiler.errors import TileOutsideBounds
|
|
from rio_tiler.utils import has_alpha_band, \
|
|
non_alpha_indexes, render
|
|
from rio_tiler.utils import _stats as raster_stats
|
|
from rio_tiler.models import ImageStatistics, ImageData
|
|
from rio_tiler.models import Metadata as RioMetadata
|
|
from rio_tiler.profiles import img_profiles
|
|
from rio_tiler.colormap import cmap as colormap
|
|
from rio_tiler.io import COGReader
|
|
import numpy as np
|
|
from .custom_colormaps_helper import custom_colormaps
|
|
from app.raster_utils import export_raster_index
|
|
from .hsvblend import hsv_blend
|
|
from .hillshade import LightSource
|
|
from .formulas import lookup_formula, get_algorithm_list
|
|
from .tasks import TaskNestedView
|
|
from rest_framework import exceptions
|
|
from rest_framework.response import Response
|
|
from worker.tasks import export_raster_index
|
|
|
|
ZOOM_EXTRA_LEVELS = 2
|
|
|
|
for custom_colormap in custom_colormaps:
|
|
colormap = colormap.register(custom_colormap)
|
|
|
|
def get_zoom_safe(src_dst):
|
|
minzoom, maxzoom = src_dst.spatial_info["minzoom"], src_dst.spatial_info["maxzoom"]
|
|
if maxzoom < minzoom:
|
|
maxzoom = minzoom
|
|
return minzoom, maxzoom
|
|
|
|
|
|
def get_tile_url(task, tile_type, query_params):
|
|
url = '/api/projects/{}/tasks/{}/{}/tiles/{{z}}/{{x}}/{{y}}.png'.format(task.project.id, task.id, tile_type)
|
|
params = {}
|
|
|
|
for k in ['formula', 'bands', 'rescale', 'color_map', 'hillshade']:
|
|
if query_params.get(k):
|
|
params[k] = query_params.get(k)
|
|
|
|
if len(params) > 0:
|
|
url = url + '?' + urllib.parse.urlencode(params)
|
|
|
|
return url
|
|
|
|
|
|
def get_extent(task, tile_type):
|
|
extent_map = {
|
|
'orthophoto': task.orthophoto_extent,
|
|
'dsm': task.dsm_extent,
|
|
'dtm': task.dtm_extent,
|
|
}
|
|
if not tile_type in extent_map:
|
|
raise exceptions.NotFound()
|
|
|
|
extent = extent_map[tile_type]
|
|
|
|
if extent is None:
|
|
raise exceptions.NotFound()
|
|
|
|
return extent
|
|
|
|
|
|
def get_raster_path(task, tile_type):
|
|
return task.get_asset_download_path(tile_type + ".tif")
|
|
|
|
|
|
class TileJson(TaskNestedView):
|
|
def get(self, request, pk=None, project_pk=None, tile_type=""):
|
|
"""
|
|
Get tile.json for this tasks's asset type
|
|
"""
|
|
task = self.get_and_check_task(request, pk)
|
|
|
|
raster_path = get_raster_path(task, tile_type)
|
|
if not os.path.isfile(raster_path):
|
|
raise exceptions.NotFound()
|
|
|
|
with COGReader(raster_path) as src:
|
|
minzoom, maxzoom = get_zoom_safe(src)
|
|
|
|
return Response({
|
|
'tilejson': '2.1.0',
|
|
'name': task.name,
|
|
'version': '1.0.0',
|
|
'scheme': 'xyz',
|
|
'tiles': [get_tile_url(task, tile_type, self.request.query_params)],
|
|
'minzoom': minzoom - ZOOM_EXTRA_LEVELS,
|
|
'maxzoom': maxzoom + ZOOM_EXTRA_LEVELS,
|
|
'bounds': get_extent(task, tile_type).extent
|
|
})
|
|
|
|
|
|
class Bounds(TaskNestedView):
|
|
def get(self, request, pk=None, project_pk=None, tile_type=""):
|
|
"""
|
|
Get the bounds for this tasks's asset type
|
|
"""
|
|
task = self.get_and_check_task(request, pk)
|
|
|
|
return Response({
|
|
'url': get_tile_url(task, tile_type, self.request.query_params),
|
|
'bounds': get_extent(task, tile_type).extent
|
|
})
|
|
|
|
|
|
class Metadata(TaskNestedView):
|
|
def get(self, request, pk=None, project_pk=None, tile_type=""):
|
|
"""
|
|
Get the metadata for this tasks's asset type
|
|
"""
|
|
task = self.get_and_check_task(request, pk)
|
|
formula = self.request.query_params.get('formula')
|
|
bands = self.request.query_params.get('bands')
|
|
defined_range = self.request.query_params.get('range')
|
|
|
|
if formula == '': formula = None
|
|
if bands == '': bands = None
|
|
if defined_range == '': defined_range = None
|
|
try:
|
|
expr, hrange = lookup_formula(formula, bands)
|
|
new_range = tuple(map(float, defined_range.split(",")[:2]))
|
|
if defined_range is not None:
|
|
#Validate rescaling range
|
|
if hrange is not None and (new_range[0] < hrange[0] or new_range[1] > hrange[1]):
|
|
pass
|
|
else:
|
|
hrange = new_range
|
|
|
|
except ValueError as e:
|
|
raise exceptions.ValidationError(str(e))
|
|
pmin, pmax = 2.0, 98.0
|
|
raster_path = get_raster_path(task, tile_type)
|
|
if not os.path.isfile(raster_path):
|
|
raise exceptions.NotFound()
|
|
try:
|
|
with COGReader(raster_path) as src:
|
|
band_count = src.metadata()['count']
|
|
if has_alpha_band(src.dataset):
|
|
band_count -= 1
|
|
nodata = None
|
|
# Workaround for https://github.com/OpenDroneMap/WebODM/issues/894
|
|
if tile_type == 'orthophoto':
|
|
nodata = 0
|
|
# info = src.metadata(pmin=pmin, pmax=pmax, histogram_bins=255, histogram_range=hrange, expr=expr,
|
|
# nodata=nodata)
|
|
histogram_options = {"bins": 255, "range": hrange}
|
|
|
|
if expr is not None:
|
|
data, mask = src.preview(expression=expr)
|
|
data = numpy.ma.array(data)
|
|
data.mask = mask == 0
|
|
expression_bloc = expr.lower().split(",")
|
|
stats = {
|
|
f"{expression_bloc[b]}": raster_stats(data[b], percentiles=(pmin, pmax), bins=255, range=hrange)
|
|
for b in range(data.shape[0])
|
|
}
|
|
stats = {b: ImageStatistics(**s) for b, s in stats.items()}
|
|
metadata = RioMetadata(statistics=stats, **src.info().dict())
|
|
else:
|
|
metadata = src.metadata(pmin=pmin, pmax=pmax, hist_options=histogram_options, nodata=nodata)
|
|
info = json.loads(metadata.json())
|
|
except IndexError as e:
|
|
# Caught when trying to get an invalid raster metadata
|
|
raise exceptions.ValidationError("Cannot retrieve raster metadata: %s" % str(e))
|
|
# Override min/max
|
|
if hrange:
|
|
for b in info['statistics']:
|
|
info['statistics'][b]['min'] = hrange[0]
|
|
info['statistics'][b]['max'] = hrange[1]
|
|
|
|
cmap_labels = {
|
|
"jet": "Jet",
|
|
"terrain": "Terrain",
|
|
"gist_earth": "Earth",
|
|
"rdylgn": "RdYlGn",
|
|
"rdylgn_r": "RdYlGn (Reverse)",
|
|
"spectral": "Spectral",
|
|
"discrete_ndvi": "Contrast NDVI",
|
|
"better_discrete_ndvi": "Custom NDVI Index",
|
|
"rplumbo": "Rplumbo (Better NDVI)",
|
|
"spectral_r": "Spectral (Reverse)",
|
|
"pastel1": "Pastel",
|
|
}
|
|
|
|
colormaps = []
|
|
algorithms = []
|
|
if tile_type in ['dsm', 'dtm']:
|
|
colormaps = ['jet', 'terrain', 'gist_earth', 'pastel1']
|
|
elif formula and bands:
|
|
colormaps = ['rdylgn', 'spectral', 'rdylgn_r', 'spectral_r', 'rplumbo', 'discrete_ndvi',
|
|
'better_discrete_ndvi']
|
|
algorithms = *get_algorithm_list(band_count),
|
|
|
|
info['color_maps'] = []
|
|
info['algorithms'] = algorithms
|
|
|
|
if colormaps:
|
|
for cmap in colormaps:
|
|
try:
|
|
info['color_maps'].append({
|
|
'key': cmap,
|
|
'color_map': colormap.get(cmap).values(),
|
|
'label': cmap_labels.get(cmap, cmap)
|
|
})
|
|
except FileNotFoundError:
|
|
raise exceptions.ValidationError("Not a valid color_map value: %s" % cmap)
|
|
|
|
info['name'] = task.name
|
|
info['scheme'] = 'xyz'
|
|
info['tiles'] = [get_tile_url(task, tile_type, self.request.query_params)]
|
|
|
|
if info['maxzoom'] < info['minzoom']:
|
|
info['maxzoom'] = info['minzoom']
|
|
info['maxzoom'] += ZOOM_EXTRA_LEVELS
|
|
info['minzoom'] -= ZOOM_EXTRA_LEVELS
|
|
info['bounds'] = {'value': src.bounds, 'crs': src.dataset.crs}
|
|
return Response(info)
|
|
|
|
|
|
def get_elevation_tiles(elevation_tile, url, x, y, z, tilesize, nodata, resampling, padding):
|
|
tile = np.full((tilesize * 3, tilesize * 3), nodata, dtype=elevation_tile.data.dtype)
|
|
with COGReader(url) as src:
|
|
try:
|
|
left, _ = src.tile(x - 1, y, z, indexes=1, tilesize=tilesize, nodata=nodata,
|
|
resampling_method=resampling, padding=padding)
|
|
tile[tilesize:tilesize * 2, 0:tilesize] = left
|
|
except TileOutsideBounds:
|
|
pass
|
|
try:
|
|
right, _ = src.tile(x + 1, y, z, indexes=1, tilesize=tilesize, nodata=nodata,
|
|
resampling_method=resampling, padding=padding)
|
|
tile[tilesize:tilesize * 2, tilesize * 2:tilesize * 3] = right
|
|
except TileOutsideBounds:
|
|
pass
|
|
try:
|
|
bottom, _ = src.tile(x, y + 1, z, indexes=1, tilesize=tilesize, nodata=nodata,
|
|
resampling_method=resampling, padding=padding)
|
|
tile[tilesize * 2:tilesize * 3, tilesize:tilesize * 2] = bottom
|
|
except TileOutsideBounds:
|
|
pass
|
|
try:
|
|
top, _ = src.tile(x, y - 1, z, indexes=1, tilesize=tilesize, nodata=nodata,
|
|
resampling_method=resampling, padding=padding)
|
|
tile[0:tilesize, tilesize:tilesize * 2] = top
|
|
except TileOutsideBounds:
|
|
pass
|
|
tile[tilesize:tilesize * 2, tilesize:tilesize * 2] = elevation_tile.data[0]
|
|
return tile
|
|
|
|
|
|
class Tiles(TaskNestedView):
|
|
def get(self, request, pk=None, project_pk=None, tile_type="", z="", x="", y="", scale=1):
|
|
"""
|
|
Get a tile image
|
|
"""
|
|
task = self.get_and_check_task(request, pk)
|
|
|
|
z = int(z)
|
|
x = int(x)
|
|
y = int(y)
|
|
|
|
scale = int(scale)
|
|
ext = "png"
|
|
driver = "jpeg" if ext == "jpg" else ext
|
|
|
|
indexes = None
|
|
nodata = None
|
|
rgb_tile = None
|
|
|
|
formula = self.request.query_params.get('formula')
|
|
bands = self.request.query_params.get('bands')
|
|
rescale = self.request.query_params.get('rescale')
|
|
color_map = self.request.query_params.get('color_map')
|
|
hillshade = self.request.query_params.get('hillshade')
|
|
|
|
if formula == '': formula = None
|
|
if bands == '': bands = None
|
|
if rescale == '': rescale = None
|
|
if color_map == '': color_map = None
|
|
if hillshade == '' or hillshade == '0': hillshade = None
|
|
|
|
try:
|
|
expr, _ = lookup_formula(formula, bands)
|
|
except ValueError as e:
|
|
raise exceptions.ValidationError(str(e))
|
|
|
|
if tile_type in ['dsm', 'dtm'] and rescale is None:
|
|
rescale = "0,1000"
|
|
|
|
if tile_type in ['dsm', 'dtm'] and color_map is None:
|
|
color_map = "gray"
|
|
|
|
if tile_type == 'orthophoto' and formula is not None:
|
|
if color_map is None:
|
|
color_map = "gray"
|
|
if rescale is None:
|
|
rescale = "-1,1"
|
|
|
|
if nodata is not None:
|
|
nodata = np.nan if nodata == "nan" else float(nodata)
|
|
tilesize = scale * 256
|
|
url = get_raster_path(task, tile_type)
|
|
with COGReader(url) as src:
|
|
if not src.tile_exists(z, x, y):
|
|
raise exceptions.NotFound("Outside of bounds")
|
|
|
|
if not os.path.isfile(url):
|
|
raise exceptions.NotFound()
|
|
|
|
with COGReader(url) as src:
|
|
minzoom, maxzoom = get_zoom_safe(src)
|
|
has_alpha = has_alpha_band(src.dataset)
|
|
if z < minzoom - ZOOM_EXTRA_LEVELS or z > maxzoom + ZOOM_EXTRA_LEVELS:
|
|
raise exceptions.NotFound()
|
|
# Handle N-bands datasets for orthophotos (not plant health)
|
|
if tile_type == 'orthophoto' and expr is None:
|
|
ci = src.dataset.colorinterp
|
|
# More than 4 bands?
|
|
if len(ci) > 4:
|
|
# Try to find RGBA band order
|
|
if ColorInterp.red in ci and \
|
|
ColorInterp.green in ci and \
|
|
ColorInterp.blue in ci:
|
|
indexes = (ci.index(ColorInterp.red) + 1,
|
|
ci.index(ColorInterp.green) + 1,
|
|
ci.index(ColorInterp.blue) + 1,)
|
|
else:
|
|
# Fallback to first three
|
|
indexes = (1, 2, 3,)
|
|
elif has_alpha:
|
|
indexes = non_alpha_indexes(src.dataset)
|
|
|
|
# Workaround for https://github.com/OpenDroneMap/WebODM/issues/894
|
|
if nodata is None and tile_type == 'orthophoto':
|
|
nodata = 0
|
|
|
|
resampling = "nearest"
|
|
padding = 0
|
|
if tile_type in ["dsm", "dtm"]:
|
|
resampling = "bilinear"
|
|
padding = 16
|
|
|
|
try:
|
|
with COGReader(url) as src:
|
|
if expr is not None:
|
|
tile = src.tile(x, y, z, expression=expr, tilesize=tilesize, nodata=nodata,
|
|
padding=padding,
|
|
resampling_method=resampling)
|
|
else:
|
|
tile = src.tile(x, y, z, indexes=indexes, tilesize=tilesize, nodata=nodata,
|
|
padding=padding, resampling_method=resampling)
|
|
|
|
except TileOutsideBounds:
|
|
raise exceptions.NotFound("Outside of bounds")
|
|
if color_map:
|
|
try:
|
|
colormap.get(color_map)
|
|
except FileNotFoundError:
|
|
raise exceptions.ValidationError("Not a valid color_map value")
|
|
intensity = None
|
|
if hillshade is not None:
|
|
try:
|
|
hillshade = float(hillshade)
|
|
if hillshade <= 0:
|
|
hillshade = 1.0
|
|
except ValueError:
|
|
raise exceptions.ValidationError("Invalid hillshade value")
|
|
if tile.data.shape[0] != 1:
|
|
raise exceptions.ValidationError(
|
|
"Cannot compute hillshade of non-elevation raster (multiple bands found)")
|
|
delta_scale = (maxzoom + ZOOM_EXTRA_LEVELS + 1 - z) * 4
|
|
dx = src.dataset.meta["transform"][0] * delta_scale
|
|
dy = -src.dataset.meta["transform"][4] * delta_scale
|
|
ls = LightSource(azdeg=315, altdeg=45)
|
|
# Hillshading is not a local tile operation and
|
|
# requires neighbor tiles to be rendered seamlessly
|
|
elevation = get_elevation_tiles(tile, url, x, y, z, tilesize, nodata, resampling, padding)
|
|
intensity = ls.hillshade(elevation, dx=dx, dy=dy, vert_exag=hillshade)
|
|
intensity = intensity[tilesize:tilesize * 2, tilesize:tilesize * 2]
|
|
if intensity is not None:
|
|
# Quick check
|
|
intensity = intensity * 255.0
|
|
rgb_tile = hsv_blend(tile.post_process(color_map=color_map).data_as_image(), intensity)
|
|
options = img_profiles.get(driver, {})
|
|
rescale_arr = tuple(map(float, rescale.split(",")))
|
|
|
|
if color_map is not None and isinstance(color_map, dict):
|
|
return HttpResponse(
|
|
tile.post_process(in_range=(rescale_arr,)).render(img_format=driver, colormap=color_map, **options),
|
|
content_type="image/{}".format(ext)
|
|
)
|
|
elif color_map is not None:
|
|
if rgb_tile is not None:
|
|
return HttpResponse(
|
|
render(rgb_tile,img_format=driver, colormap=colormap.get(color_map), **options),
|
|
content_type="image/{}".format(ext)
|
|
)
|
|
return HttpResponse(
|
|
tile.post_process(in_range=(rescale_arr,)).render(img_format=driver, colormap=colormap.get(color_map),
|
|
**options),
|
|
content_type="image/{}".format(ext)
|
|
)
|
|
return HttpResponse(
|
|
tile.post_process(in_range=(rescale_arr,)).render(img_format=driver, **options),
|
|
content_type="image/{}".format(ext)
|
|
)
|
|
|
|
|
|
class Export(TaskNestedView):
|
|
def post(self, request, pk=None, project_pk=None):
|
|
"""
|
|
Export an orthophoto after applying a formula
|
|
"""
|
|
task = self.get_and_check_task(request, pk)
|
|
|
|
formula = request.data.get('formula')
|
|
bands = request.data.get('bands')
|
|
# rescale = request.data.get('rescale')
|
|
|
|
if formula == '': formula = None
|
|
if bands == '': bands = None
|
|
# if rescale == '': rescale = None
|
|
|
|
if not formula:
|
|
raise exceptions.ValidationError("You need to specify a formula parameter")
|
|
|
|
if not bands:
|
|
raise exceptions.ValidationError("You need to specify a bands parameter")
|
|
|
|
try:
|
|
expr, _ = lookup_formula(formula, bands)
|
|
except ValueError as e:
|
|
raise exceptions.ValidationError(str(e))
|
|
|
|
# if formula is not None and rescale is None:
|
|
# rescale = "-1,1"
|
|
|
|
url = get_raster_path(task, "orthophoto")
|
|
|
|
if not os.path.isfile(url):
|
|
raise exceptions.NotFound()
|
|
|
|
celery_task_id = export_raster_index.delay(url, expr).task_id
|
|
return Response({'celery_task_id': celery_task_id})
|