kopia lustrzana https://github.com/OpenDroneMap/WebODM
166 wiersze
5.7 KiB
Python
166 wiersze
5.7 KiB
Python
# Algos from https://github.com/dirceup/tiled-vegetation-indices/blob/master/app/lib/vegetation_index.rb
|
|
# Functions can use all of the supported functions and operators from
|
|
# https://numexpr.readthedocs.io/en/latest/user_guide.html#supported-operators
|
|
|
|
import re
|
|
from functools import lru_cache
|
|
from django.utils.translation import gettext_lazy as _
|
|
|
|
algos = {
|
|
'NDVI': {
|
|
'expr': '(N - R) / (N + R)',
|
|
'help': _('Normalized Difference Vegetation Index shows the amount of green vegetation.')
|
|
},
|
|
'NDVI (Blue)': {
|
|
'expr': '(N - B) / (N + B)',
|
|
'help': _('Normalized Difference Vegetation Index shows the amount of green vegetation.')
|
|
},
|
|
'ENDVI':{
|
|
'expr': '((N + G) - (2 * B)) / ((N + G) + (2 * B))',
|
|
'help': _('Enhanced Normalized Difference Vegetation Index is like NDVI, but uses Blue and Green bands instead of only Red to isolate plant health.')
|
|
},
|
|
'VARI': {
|
|
'expr': '(G - R) / (G + R - B)',
|
|
'help': _('Visual Atmospheric Resistance Index shows the areas of vegetation.'),
|
|
'range': (-1, 1)
|
|
},
|
|
'EXG': {
|
|
'expr': '(2 * G) - (R + B)',
|
|
'help': _('Excess Green Index (derived from only the RGB bands) emphasizes the greenness of leafy crops such as potatoes.')
|
|
},
|
|
'TGI': {
|
|
'expr': '(G - 0.39) * (R - 0.61) * B',
|
|
'help': _('Triangular Greenness Index (derived from only the RGB bands) performs similarly to EXG but with improvements over certain environments.')
|
|
},
|
|
'BAI': {
|
|
'expr': '1.0 / (((0.1 - R) ** 2) + ((0.06 - N) ** 2))',
|
|
'help': _('Burn Area Index hightlights burned land in the red to near-infrared spectrum.')
|
|
},
|
|
'GLI': {
|
|
'expr': '((G * 2) - R - B) / ((G * 2) + R + B)',
|
|
'help': _('Green Leaf Index shows greens leaves and stems.'),
|
|
'range': (-1, 1)
|
|
},
|
|
'GNDVI':{
|
|
'expr': '(N - G) / (N + G)',
|
|
'help': _('Green Normalized Difference Vegetation Index is similar to NDVI, but measures the green spectrum instead of red.')
|
|
},
|
|
'GRVI':{
|
|
'expr': 'N / G',
|
|
'help': _('Green Ratio Vegetation Index is sensitive to photosynthetic rates in forests.')
|
|
},
|
|
'SAVI':{
|
|
'expr': '(1.5 * (N - R)) / (N + R + 0.5)',
|
|
'help': _('Soil Adjusted Vegetation Index is similar to NDVI but attempts to remove the effects of soil areas using an adjustment factor (0.5).')
|
|
},
|
|
'MNLI':{
|
|
'expr': '((N ** 2 - R) * 1.5) / (N ** 2 + R + 0.5)',
|
|
'help': _('Modified Non-Linear Index improves the Non-Linear Index algorithm to account for soil areas.')
|
|
},
|
|
'MSR': {
|
|
'expr': '((N / R) - 1) / (sqrt(N / R) + 1)',
|
|
'help': _('Modified Simple Ratio is an improvement of the Simple Ratio (SR) index to be more sensitive to vegetation.')
|
|
},
|
|
'RDVI': {
|
|
'expr': '(N - R) / sqrt(N + R)',
|
|
'help': _('Renormalized Difference Vegetation Index uses the difference between near-IR and red, plus NDVI to show areas of healthy vegetation.')
|
|
},
|
|
'TDVI': {
|
|
'expr': '1.5 * ((N - R) / sqrt(N ** 2 + R + 0.5))',
|
|
'help': _('Transformed Difference Vegetation Index highlights vegetation cover in urban environments.')
|
|
},
|
|
'OSAVI': {
|
|
'expr': '(N - R) / (N + R + 0.16)',
|
|
'help': _('Optimized Soil Adjusted Vegetation Index is based on SAVI, but tends to work better in areas with little vegetation where soil is visible.')
|
|
},
|
|
'LAI': {
|
|
'expr': '3.618 * (2.5 * (N - R) / (N + 6*R - 7.5*B + 1)) * 0.118',
|
|
'help': _('Leaf Area Index estimates foliage areas and predicts crop yields.'),
|
|
'range': (-1, 1)
|
|
},
|
|
'EVI': {
|
|
'expr': '2.5 * (N - R) / (N + 6*R - 7.5*B + 1)',
|
|
'help': _('Enhanced Vegetation Index is useful in areas where NDVI might saturate, by using blue wavelengths to correct soil signals.'),
|
|
'range': (-1, 1)
|
|
},
|
|
|
|
# more?
|
|
|
|
'_TESTRB': {
|
|
'expr': 'R + B',
|
|
'range': (0,1)
|
|
},
|
|
|
|
'_TESTFUNC': {
|
|
'expr': 'R + (sqrt(B) )'
|
|
}
|
|
}
|
|
|
|
camera_filters = [
|
|
'RGB',
|
|
'RGN',
|
|
'NGB',
|
|
'NRG',
|
|
'NRB',
|
|
|
|
'RGBN',
|
|
'GRReN',
|
|
|
|
'BGRNRe',
|
|
'BGRReN',
|
|
'RGBNRe',
|
|
'RGBReN',
|
|
|
|
# more?
|
|
# TODO: certain cameras have only two bands? eg. MAPIR NDVI BLUE+NIR
|
|
]
|
|
|
|
@lru_cache(maxsize=20)
|
|
def lookup_formula(algo, band_order = 'RGB'):
|
|
if algo is None:
|
|
return None, None
|
|
if band_order is None:
|
|
band_order = 'RGB'
|
|
|
|
if algo not in algos:
|
|
raise ValueError("Cannot find algorithm " + algo)
|
|
|
|
input_bands = tuple(band_order)
|
|
|
|
def repl(matches):
|
|
b = matches.group(1)
|
|
try:
|
|
return 'b' + str(input_bands.index(b) + 1)
|
|
except ValueError:
|
|
raise ValueError("Cannot find band \"" + b + "\" from \"" + band_order + "\". Choose a proper band order.")
|
|
|
|
expr = re.sub("([A-Z]+?[a-z]*)", repl, re.sub("\s+", "", algos[algo]['expr']))
|
|
hrange = algos[algo].get('range', None)
|
|
|
|
return expr, hrange
|
|
|
|
@lru_cache(maxsize=2)
|
|
def get_algorithm_list(max_bands=3):
|
|
return [{'id': k, 'filters': get_camera_filters_for(algos[k], max_bands), **algos[k]} for k in algos if not k.startswith("_")]
|
|
|
|
def get_camera_filters_for(algo, max_bands=3):
|
|
result = []
|
|
expr = algo['expr']
|
|
pattern = re.compile("([A-Z]+?[a-z]*)")
|
|
bands = list(set(re.findall(pattern, expr)))
|
|
for f in camera_filters:
|
|
# Count bands that show up in the filter
|
|
count = 0
|
|
fbands = list(set(re.findall(pattern, f)))
|
|
|
|
for b in fbands:
|
|
if b in bands:
|
|
count += 1
|
|
|
|
# If all bands are accounted for, this is a valid filter for this algo
|
|
if count >= len(bands) and len(fbands) <= max_bands:
|
|
result.append(f)
|
|
|
|
return result
|
|
|