pull/1286/head
Piero Toffanin 2023-01-28 11:59:45 -05:00
rodzic d0de84c296
commit fc6af96011
2 zmienionych plików z 83 dodań i 82 usunięć

Wyświetl plik

@ -1,92 +1,93 @@
// Auto-generated with extract_odm_strings.py, do not edit!
_("Average number of images per submodel. When splitting a large dataset into smaller submodels, images are grouped into clusters. This value regulates the number of images that each cluster should have on average. Default: %(default)s");
_("Set a value in meters for the GPS Dilution of Precision (DOP) information for all images. If your images are tagged with high precision GPS information (RTK), this value will be automatically set accordingly. You can use this option to manually set it in case the reconstruction fails. Lowering this option can sometimes help control bowling-effects over large areas. Default: %(default)s");
_("show this help message and exit");
_("Classify the point cloud outputs using a Simple Morphological Filter. You can control the behavior of this option by tweaking the --dem-* parameters. Default: %(default)s");
_("Use this tag if you have a GCP File but want to use the EXIF information for georeferencing instead. Default: %(default)s");
_("Generate static tiles for orthophotos and DEMs that are suitable for viewers like Leaflet or OpenLayers. Default: %(default)s");
_("Simple Morphological Filter window radius parameter (meters). Default: %(default)s");
_("The maximum vertex count of the output mesh. Default: %(default)s");
_("Minimum number of features to extract per image. More features can be useful for finding more matches between images, potentially allowing the reconstruction of areas with little overlap or insufficient features. More features also slow down processing. Default: %(default)s");
_("Ignore Ground Sampling Distance (GSD). GSD caps the maximum resolution of image outputs and resizes images when necessary, resulting in faster processing and lower memory usage. Since GSD is an estimate, sometimes ignoring it can result in slightly better image output quality. Default: %(default)s");
_("Decimate the points before generating the DEM. 1 is no decimation (full quality). 100 decimates ~99%% of the points. Useful for speeding up generation of DEM results in very large datasets. Default: %(default)s");
_("Skips dense reconstruction and 3D model generation. It generates an orthophoto directly from the sparse reconstruction. If you just need an orthophoto and do not need a full 3D model, turn on this option. Default: %(default)s");
_("Use this tag to build a DSM (Digital Surface Model, ground + objects) using a progressive morphological filter. Check the --dem* parameters for finer tuning. Default: %(default)s");
_("Delete heavy intermediate files to optimize disk space usage. This affects the ability to restart the pipeline from an intermediate stage, but allows datasets to be processed on machines that don't have sufficient disk space available. Default: %(default)s");
_("Permanently delete all previous results and rerun the processing pipeline.");
_("Set a camera projection type. Manually setting a value can help improve geometric undistortion. By default the application tries to determine a lens type from the images metadata. Can be one of: %(choices)s. Default: %(default)s");
_("Reduce the memory usage needed for depthmap fusion by splitting large scenes into tiles. Turn this on if your machine doesn't have much RAM and/or you've set --pc-quality to high or ultra. Experimental. Default: %(default)s");
_("Maximum number of frames to extract from video files for processing. Set to 0 for no limit. Default: %(default)s");
_("Average number of images per submodel. When splitting a large dataset into smaller submodels, images are grouped into clusters. This value regulates the number of images that each cluster should have on average. Default: %(default)s");
_("Computes an euclidean raster map for each DEM. The map reports the distance from each cell to the nearest NODATA value (before any hole filling takes place). This can be useful to isolate the areas that have been filled. Default: %(default)s");
_("Use images' GPS exif data for reconstruction, even if there are GCPs present.This flag is useful if you have high precision GPS measurements. If there are no GCPs, this flag does nothing. Default: %(default)s");
_("Choose what to merge in the merge step in a split dataset. By default all available outputs are merged. Options: %(choices)s. Default: %(default)s");
_("Export the georeferenced point cloud in Entwine Point Tile (EPT) format. Default: %(default)s");
_("Octree depth used in the mesh reconstruction, increase to get more vertices, recommended values are 8-12. Default: %(default)s");
_("Skip normalization of colors across all images. Useful when processing radiometric data. Default: %(default)s");
_("Use the camera parameters computed from another dataset instead of calculating them. Can be specified either as path to a cameras.json file or as a JSON string representing the contents of a cameras.json file. Default: %(default)s");
_("The maximum number of processes to use in various processes. Peak memory requirement is ~1GB per thread and 2 megapixel image resolution. Default: %(default)s");
_("Create Cloud-Optimized GeoTIFFs instead of normal GeoTIFFs. Default: %(default)s");
_("Skip generation of a full 3D model. This can save time if you only need 2D results such as orthophotos and DEMs. Default: %(default)s");
_("Automatically compute image masks using AI to remove the background. Experimental. Default: %(default)s");
_("Path to the image geolocation file containing the camera center coordinates used for georeferencing. If you dont have values for omega/phi/kappa you can set them to 0. The file needs to use the following format: EPSG:<code> or <+proj definition>image_name geo_x geo_y geo_z [omega (degrees)] [phi (degrees)] [kappa (degrees)] [horz accuracy (meters)] [vert accuracy (meters)]Default: %(default)s");
_("Set this parameter if you want to generate a PNG rendering of the orthophoto. Default: %(default)s");
_("Choose the algorithm for extracting keypoints and computing descriptors. Can be one of: %(choices)s. Default: %(default)s");
_("Generate OGC 3D Tiles outputs. Default: %(default)s");
_("Orthophoto resolution in cm / pixel. Note that this value is capped by a ground sampling distance (GSD) estimate. To remove the cap, check --ignore-gsd also. Default: %(default)s");
_("GeoJSON polygon limiting the area of the reconstruction. Can be specified either as path to a GeoJSON file or as a JSON string representing the contents of a GeoJSON file. Default: %(default)s");
_("Geometric estimates improve the accuracy of the point cloud by computing geometrically consistent depthmaps but may not be usable in larger datasets. This flag disables geometric estimates. Default: %(default)s");
_("Simple Morphological Filter elevation scalar parameter. Default: %(default)s");
_("DSM/DTM resolution in cm / pixel. Note that this value is capped to 2x the ground sampling distance (GSD) estimate. To remove the cap, check --ignore-gsd also. Default: %(default)s");
_("Turn off camera parameter optimization during bundle adjustment. This can be sometimes useful for improving results that exhibit doming/bowling or when images are taken with a rolling shutter camera. Default: %(default)s");
_("Rerun this stage only and stop. Can be one of: %(choices)s. Default: %(default)s");
_("Path to the project folder. Your project folder should contain subfolders for each dataset. Each dataset should have an \"images\" folder.");
_("Generate single file Binary glTF (GLB) textured models. Default: %(default)s");
_("URL to a ClusterODM instance for distributing a split-merge workflow on multiple nodes in parallel. Default: %(default)s");
_("Set feature extraction quality. Higher quality generates better features, but requires more memory and takes longer. Can be one of: %(choices)s. Default: %(default)s");
_("Simple Morphological Filter elevation threshold parameter (meters). Default: %(default)s");
_("Set this parameter if you want to generate a Google Earth (KMZ) rendering of the orthophoto. Default: %(default)s");
_("Classify the point cloud outputs using a Simple Morphological Filter. You can control the behavior of this option by tweaking the --dem-* parameters. Default: %(default)s");
_("Do not use GPU acceleration, even if it's available. Default: %(default)s");
_("Generates a polygon around the cropping area that cuts the orthophoto around the edges of features. This polygon can be useful for stitching seamless mosaics with multiple overlapping orthophotos. Default: %(default)s");
_("Computes an euclidean raster map for each DEM. The map reports the distance from each cell to the nearest NODATA value (before any hole filling takes place). This can be useful to isolate the areas that have been filled. Default: %(default)s");
_("Minimum number of features to extract per image. More features can be useful for finding more matches between images, potentially allowing the reconstruction of areas with little overlap or insufficient features. More features also slow down processing. Default: %(default)s");
_("Generate static tiles for orthophotos and DEMs that are suitable for viewers like Leaflet or OpenLayers. Default: %(default)s");
_("Legacy option (use --feature-quality instead). Resizes images by the largest side for feature extraction purposes only. Set to -1 to disable. This does not affect the final orthophoto resolution quality and will not resize the original images. Default: %(default)s");
_("Path to the file containing the ground control points used for georeferencing. The file needs to use the following format: EPSG:<code> or <+proj definition>geo_x geo_y geo_z im_x im_y image_name [gcp_name] [extra1] [extra2]Default: %(default)s");
_("Path to the image geolocation file containing the camera center coordinates used for georeferencing. Note that omega/phi/kappa are currently not supported (you can set them to 0). The file needs to use the following format: EPSG:<code> or <+proj definition>image_name geo_x geo_y geo_z [omega (degrees)] [phi (degrees)] [kappa (degrees)] [horz accuracy (meters)] [vert accuracy (meters)]Default: %(default)s");
_("Filters the point cloud by keeping only a single point around a radius N (in meters). This can be useful to limit the output resolution of the point cloud and remove duplicate points. Set to 0 to disable sampling. Default: %(default)s");
_("Name of dataset (i.e subfolder name within project folder). Default: %(default)s");
_("Automatically crop image outputs by creating a smooth buffer around the dataset boundaries, shrinked by N meters. Use 0 to disable cropping. Default: %(default)s");
_("Radius of the overlap between submodels. After grouping images into clusters, images that are closer than this radius to a cluster are added to the cluster. This is done to ensure that neighboring submodels overlap. Default: %(default)s");
_("Rerun processing from this stage. Can be one of: %(choices)s. Default: %(default)s");
_("Path to the image groups file that controls how images should be split into groups. The file needs to use the following format: image_name group_nameDefault: %(default)s");
_("When texturing the 3D mesh, for each triangle, choose to prioritize images with sharp features (gmi) or those that cover the largest area (area). Default: %(default)s");
_("Choose what to merge in the merge step in a split dataset. By default all available outputs are merged. Options: %(choices)s. Default: %(default)s");
_("Use a full 3D mesh to compute the orthophoto instead of a 2.5D mesh. This option is a bit faster and provides similar results in planar areas. Default: %(default)s");
_("Override the rolling shutter readout time for your camera sensor (in milliseconds), instead of using the rolling shutter readout database. Note that not all cameras are present in the database. Set to 0 to use the database value. Default: %(default)s");
_("Reduce the memory usage needed for depthmap fusion by splitting large scenes into tiles. Turn this on if your machine doesn't have much RAM and/or you've set --pc-quality to high or ultra. Experimental. Default: %(default)s");
_("Use the camera parameters computed from another dataset instead of calculating them. Can be specified either as path to a cameras.json file or as a JSON string representing the contents of a cameras.json file. Default: %(default)s");
_("When processing multispectral datasets, you can specify the name of the primary band that will be used for reconstruction. It's recommended to choose a band which has sharp details and is in focus. Default: %(default)s");
_("Filters the point cloud by removing points that deviate more than N standard deviations from the local mean. Set to 0 to disable filtering. Default: %(default)s");
_("Save the georeferenced point cloud in Cloud Optimized Point Cloud (COPC) format. Default: %(default)s");
_("Use this tag to build a DTM (Digital Terrain Model, ground only) using a simple morphological filter. Check the --dem* and --smrf* parameters for finer tuning. Default: %(default)s");
_("Skip normalization of colors across all images. Useful when processing radiometric data. Default: %(default)s");
_("When processing multispectral datasets, ODM will automatically align the images for each band. If the images have been postprocessed and are already aligned, use this option. Default: %(default)s");
_("Set a camera projection type. Manually setting a value can help improve geometric undistortion. By default the application tries to determine a lens type from the images metadata. Can be one of: %(choices)s. Default: %(default)s");
_("Ignore Ground Sampling Distance (GSD). GSD caps the maximum resolution of image outputs and resizes images when necessary, resulting in faster processing and lower memory usage. Since GSD is an estimate, sometimes ignoring it can result in slightly better image output quality. Default: %(default)s");
_("End processing at this stage. Can be one of: %(choices)s. Default: %(default)s");
_("Generates a benchmark file with runtime info. Default: %(default)s");
_("Skip the blending of colors near seams. Default: %(default)s");
_("Octree depth used in the mesh reconstruction, increase to get more vertices, recommended values are 8-12. Default: %(default)s");
_("Skip generation of the orthophoto. This can save time if you only need 3D results or DEMs. Default: %(default)s");
_("Set the radiometric calibration to perform on images. When processing multispectral and thermal images you should set this option to obtain reflectance/temperature values (otherwise you will get digital number values). [camera] applies black level, vignetting, row gradient gain/exposure compensation (if appropriate EXIF tags are found) and computes absolute temperature values. [camera+sun] is experimental, applies all the corrections of [camera], plus compensates for spectral radiance registered via a downwelling light sensor (DLS) taking in consideration the angle of the sun. Can be one of: %(choices)s. Default: %(default)s");
_("Number of steps used to fill areas with gaps. Set to 0 to disable gap filling. Starting with a radius equal to the output resolution, N different DEMs are generated with progressively bigger radius using the inverse distance weighted (IDW) algorithm and merged together. Remaining gaps are then merged using nearest neighbor interpolation. Default: %(default)s");
_("DSM/DTM resolution in cm / pixel. Note that this value is capped to 2x the ground sampling distance (GSD) estimate. To remove the cap, check --ignore-gsd also. Default: %(default)s");
_("The maximum vertex count of the output mesh. Default: %(default)s");
_("Set this parameter if you want a striped GeoTIFF. Default: %(default)s");
_("Generate OGC 3D Tiles outputs. Default: %(default)s");
_("Run local bundle adjustment for every image added to the reconstruction and a global adjustment every 100 images. Speeds up reconstruction for very large datasets. Default: %(default)s");
_("Rerun this stage only and stop. Can be one of: %(choices)s. Default: %(default)s");
_("Skips dense reconstruction and 3D model generation. It generates an orthophoto directly from the sparse reconstruction. If you just need an orthophoto and do not need a full 3D model, turn on this option. Default: %(default)s");
_("Use images' GPS exif data for reconstruction, even if there are GCPs present.This flag is useful if you have high precision GPS measurements. If there are no GCPs, this flag does nothing. Default: %(default)s");
_("The maximum number of processes to use in various processes. Peak memory requirement is ~1GB per thread and 2 megapixel image resolution. Default: %(default)s");
_("Matcher algorithm, Fast Library for Approximate Nearest Neighbors or Bag of Words. FLANN is slower, but more stable. BOW is faster, but can sometimes miss valid matches. BRUTEFORCE is very slow but robust.Can be one of: %(choices)s. Default: %(default)s");
_("Set this parameter if you want to generate a PNG rendering of the orthophoto. Default: %(default)s");
_("Export the georeferenced point cloud in LAS format. Default: %(default)s");
_("Perform image matching with the nearest images based on GPS exif data. Set to 0 to match by triangulation. Default: %(default)s");
_("Turn on rolling shutter correction. If the camera has a rolling shutter and the images were taken in motion, you can turn on this option to improve the accuracy of the results. See also --rolling-shutter-readout. Default: %(default)s");
_("Export the georeferenced point cloud in Entwine Point Tile (EPT) format. Default: %(default)s");
_("Path to the project folder. Your project folder should contain subfolders for each dataset. Each dataset should have an \"images\" folder.");
_("Print additional messages to the console. Default: %(default)s");
_("Print debug messages. Default: %(default)s");
_("Use this tag to build a DSM (Digital Surface Model, ground + objects) using a progressive morphological filter. Check the --dem* parameters for finer tuning. Default: %(default)s");
_("Create Cloud-Optimized GeoTIFFs instead of normal GeoTIFFs. Default: %(default)s");
_("Simple Morphological Filter slope parameter (rise over run). Default: %(default)s");
_("Skip generation of PDF report. This can save time if you don't need a report. Default: %(default)s");
_("Keep faces in the mesh that are not seen in any camera. Default: %(default)s");
_("Turn on gamma tone mapping or none for no tone mapping. Can be one of %(choices)s. Default: %(default)s ");
_("GeoJSON polygon limiting the area of the reconstruction. Can be specified either as path to a GeoJSON file or as a JSON string representing the contents of a GeoJSON file. Default: %(default)s");
_("Turn off camera parameter optimization during bundle adjustment. This can be sometimes useful for improving results that exhibit doming/bowling or when images are taken with a rolling shutter camera. Default: %(default)s");
_("Orthophoto resolution in cm / pixel. Note that this value is capped by a ground sampling distance (GSD) estimate. To remove the cap, check --ignore-gsd also. Default: %(default)s");
_("Improve the accuracy of the point cloud by computing geometrically consistent depthmaps. This increases processing time, but can improve results in urban scenes. Default: %(default)s");
_("Simple Morphological Filter window radius parameter (meters). Default: %(default)s");
_("Set point cloud quality. Higher quality generates better, denser point clouds, but requires more memory and takes longer. Each step up in quality increases processing time roughly by a factor of 4x.Can be one of: %(choices)s. Default: %(default)s");
_("Export the georeferenced point cloud in CSV format. Default: %(default)s");
_("Build orthophoto overviews for faster display in programs such as QGIS. Default: %(default)s");
_("Copy output results to this folder after processing.");
_("Choose the algorithm for extracting keypoints and computing descriptors. Can be one of: %(choices)s. Default: %(default)s");
_("Permanently delete all previous results and rerun the processing pipeline.");
_("URL to a ClusterODM instance for distributing a split-merge workflow on multiple nodes in parallel. Default: %(default)s");
_("Skip generation of a full 3D model. This can save time if you only need 2D results such as orthophotos and DEMs. Default: %(default)s");
_("Automatically set a boundary using camera shot locations to limit the area of the reconstruction. This can help remove far away background artifacts (sky, background landscapes, etc.). See also --boundary. Default: %(default)s");
_("Displays version number and exits. ");
_("Type of photometric outlier removal method. Can be one of: %(choices)s. Default: %(default)s");
_("Perform image matching with the nearest images based on GPS exif data. Set to 0 to match by triangulation. Default: %(default)s");
_("Matcher algorithm, Fast Library for Approximate Nearest Neighbors or Bag of Words. FLANN is slower, but more stable. BOW is faster, but can sometimes miss valid matches. BRUTEFORCE is very slow but robust.Can be one of: %(choices)s. Default: %(default)s");
_("Choose the structure from motion algorithm. For aerial datasets, if camera GPS positions and angles are available, triangulation can generate better results. For planar scenes captured at fixed altitude with nadir-only images, planar can be much faster. Can be one of: %(choices)s. Default: %(default)s");
_("Simple Morphological Filter elevation scalar parameter. Default: %(default)s");
_("Controls the density of the point cloud by setting the resolution of the depthmap images. Higher values take longer to compute but produce denser point clouds. Overrides the value calculated by --pc-quality.Default: %(default)s");
_("Number of steps used to fill areas with gaps. Set to 0 to disable gap filling. Starting with a radius equal to the output resolution, N different DEMs are generated with progressively bigger radius using the inverse distance weighted (IDW) algorithm and merged together. Remaining gaps are then merged using nearest neighbor interpolation. Default: %(default)s");
_("Skip the blending of colors near seams. Default: %(default)s");
_("Path to the image groups file that controls how images should be split into groups. The file needs to use the following format: image_name group_nameDefault: %(default)s");
_("The maximum output resolution of extracted video frames in pixels. Default: %(default)s");
_("Filters the point cloud by keeping only a single point around a radius N (in meters). This can be useful to limit the output resolution of the point cloud and remove duplicate points. Set to 0 to disable sampling. Default: %(default)s");
_("Path to a GeoTIFF DEM or a LAS/LAZ point cloud that the reconstruction outputs should be automatically aligned to. Experimental. Default: %(default)s");
_("Rerun processing from this stage. Can be one of: %(choices)s. Default: %(default)s");
_("Set point cloud quality. Higher quality generates better, denser point clouds, but requires more memory and takes longer. Each step up in quality increases processing time roughly by a factor of 4x.Can be one of: %(choices)s. Default: %(default)s");
_("Radius of the overlap between submodels. After grouping images into clusters, images that are closer than this radius to a cluster are added to the cluster. This is done to ensure that neighboring submodels overlap. Default: %(default)s");
_("Save the georeferenced point cloud in Cloud Optimized Point Cloud (COPC) format. Default: %(default)s");
_("Set a value in meters for the GPS Dilution of Precision (DOP) information for all images. If your images are tagged with high precision GPS information (RTK), this value will be automatically set accordingly. You can use this option to manually set it in case the reconstruction fails. Lowering this option can sometimes help control bowling-effects over large areas. Default: %(default)s");
_("Override the rolling shutter readout time for your camera sensor (in milliseconds), instead of using the rolling shutter readout database. Note that not all cameras are present in the database. Set to 0 to use the database value. Default: %(default)s");
_("Name of dataset (i.e subfolder name within project folder). Default: %(default)s");
_("Copy output results to this folder after processing.");
_("Build orthophoto overviews for faster display in programs such as QGIS. Default: %(default)s");
_("Use this tag to build a DTM (Digital Terrain Model, ground only) using a simple morphological filter. Check the --dem* and --smrf* parameters for finer tuning. Default: %(default)s");
_("show this help message and exit");
_("Do not use GPU acceleration, even if it's available. Default: %(default)s");
_("Skip generation of the orthophoto. This can save time if you only need 3D results or DEMs. Default: %(default)s");
_("Simple Morphological Filter slope parameter (rise over run). Default: %(default)s");
_("Turn on rolling shutter correction. If the camera has a rolling shutter and the images were taken in motion, you can turn on this option to improve the accuracy of the results. See also --rolling-shutter-readout. Default: %(default)s");
_("When processing multispectral datasets, you can specify the name of the primary band that will be used for reconstruction. It's recommended to choose a band which has sharp details and is in focus. Default: %(default)s");
_("Automatically compute image masks using AI to remove the sky. Experimental. Default: %(default)s");
_("Set the radiometric calibration to perform on images. When processing multispectral and thermal images you should set this option to obtain reflectance/temperature values (otherwise you will get digital number values). [camera] applies black level, vignetting, row gradient gain/exposure compensation (if appropriate EXIF tags are found) and computes absolute temperature values. [camera+sun] is experimental, applies all the corrections of [camera], plus compensates for spectral radiance registered via a downwelling light sensor (DLS) taking in consideration the angle of the sun. Can be one of: %(choices)s. Default: %(default)s");
_("Specify the distance between camera shot locations and the outer edge of the boundary when computing the boundary with --auto-boundary. Set to 0 to automatically choose a value. Default: %(default)s");
_("Generates a polygon around the cropping area that cuts the orthophoto around the edges of features. This polygon can be useful for stitching seamless mosaics with multiple overlapping orthophotos. Default: %(default)s");
_("End processing at this stage. Can be one of: %(choices)s. Default: %(default)s");
_("Skip generation of PDF report. This can save time if you don't need a report. Default: %(default)s");
_("Automatically crop image outputs by creating a smooth buffer around the dataset boundaries, shrunk by N meters. Use 0 to disable cropping. Default: %(default)s");
_("Perform ground rectification on the point cloud. This means that wrongly classified ground points will be re-classified and gaps will be filled. Useful for generating DTMs. Default: %(default)s");
_("Delete heavy intermediate files to optimize disk space usage. This affects the ability to restart the pipeline from an intermediate stage, but allows datasets to be processed on machines that don't have sufficient disk space available. Default: %(default)s");
_("Set this parameter if you want to generate a Google Earth (KMZ) rendering of the orthophoto. Default: %(default)s");
_("Export the georeferenced point cloud in LAS format. Default: %(default)s");
_("Set this parameter if you want a striped GeoTIFF. Default: %(default)s");
_("Run local bundle adjustment for every image added to the reconstruction and a global adjustment every 100 images. Speeds up reconstruction for very large datasets. Default: %(default)s");
_("Set the compression to use for orthophotos. Can be one of: %(choices)s. Default: %(default)s");
_("Generate OBJs that have a single material and a single texture file instead of multiple ones. Default: %(default)s");
_("Keep faces in the mesh that are not seen in any camera. Default: %(default)s");
_("When processing multispectral datasets, ODM will automatically align the images for each band. If the images have been postprocessed and are already aligned, use this option. Default: %(default)s");
_("Path to the file containing the ground control points used for georeferencing. The file needs to use the following format: EPSG:<code> or <+proj definition>geo_x geo_y geo_z im_x im_y image_name [gcp_name] [extra1] [extra2]Default: %(default)s");
_("Automatically set a boundary using camera shot locations to limit the area of the reconstruction. This can help remove far away background artifacts (sky, background landscapes, etc.). See also --boundary. Default: %(default)s");
_("Skip alignment of submodels in split-merge. Useful if GPS is good enough on very large datasets. Default: %(default)s");
_("Displays version number and exits. ");
_("Filters the point cloud by removing points that deviate more than N standard deviations from the local mean. Set to 0 to disable filtering. Default: %(default)s");

2
locale

@ -1 +1 @@
Subproject commit 44f7d61b0b1a63f11598b497425de5a40c02b16a
Subproject commit f5660651b87d1a2248aea9dd139e33bc6a2fd0bc