2018-01-16 19:46:30 +00:00
|
|
|
import os, glob
|
|
|
|
import gippy
|
|
|
|
import numpy
|
2019-04-11 20:29:53 +00:00
|
|
|
import math
|
|
|
|
from opendm.system import run
|
|
|
|
from opendm import point_cloud
|
|
|
|
from opendm.concurrency import get_max_memory
|
|
|
|
import pprint
|
|
|
|
|
2018-06-11 19:21:19 +00:00
|
|
|
from scipy import ndimage
|
2018-01-16 19:46:30 +00:00
|
|
|
from datetime import datetime
|
2018-01-16 20:23:19 +00:00
|
|
|
from opendm import log
|
2018-06-11 19:21:19 +00:00
|
|
|
from loky import get_reusable_executor
|
|
|
|
from functools import partial
|
2018-01-16 19:46:30 +00:00
|
|
|
|
|
|
|
from . import pdal
|
|
|
|
|
2019-03-05 15:50:27 +00:00
|
|
|
def classify(lasFile, slope=0.15, cellsize=1, maxWindowSize=18, verbose=False):
|
2018-01-16 19:46:30 +00:00
|
|
|
start = datetime.now()
|
|
|
|
|
|
|
|
try:
|
2019-03-05 15:50:27 +00:00
|
|
|
pdal.run_pdaltranslate_smrf(lasFile, lasFile, slope, cellsize, maxWindowSize, verbose)
|
2018-01-16 19:46:30 +00:00
|
|
|
except:
|
|
|
|
raise Exception("Error creating classified file %s" % fout)
|
|
|
|
|
2018-01-16 20:23:19 +00:00
|
|
|
log.ODM_INFO('Created %s in %s' % (os.path.relpath(lasFile), datetime.now() - start))
|
2018-01-16 19:46:30 +00:00
|
|
|
return lasFile
|
|
|
|
|
|
|
|
|
2019-04-11 20:29:53 +00:00
|
|
|
def create_dem(input_point_cloud, dem_type, output_type='max', radiuses=['0.56'], gapfill=True,
|
|
|
|
outdir='', resolution=0.1, max_workers=None, max_tile_size=4096,
|
|
|
|
verbose=False, decimation=None):
|
|
|
|
""" Create DEM from multiple radii, and optionally gapfill """
|
|
|
|
start = datetime.now()
|
2018-01-16 19:46:30 +00:00
|
|
|
|
2019-04-11 20:29:53 +00:00
|
|
|
if not os.path.exists(outdir):
|
|
|
|
log.ODM_INFO("Creating %s" % outdir)
|
|
|
|
os.mkdir(outdir)
|
|
|
|
|
|
|
|
extent = point_cloud.get_extent(input_point_cloud)
|
|
|
|
log.ODM_INFO("Point cloud bounds are [minx: %s, maxx: %s] [miny: %s, maxy: %s]" % (extent['minx'], extent['maxx'], extent['miny'], extent['maxy']))
|
|
|
|
# extent = {
|
|
|
|
# 'maxx': 100,
|
|
|
|
# 'minx': 0,
|
|
|
|
# 'maxy': 100,
|
|
|
|
# 'miny': 0
|
|
|
|
# }
|
|
|
|
ext_width = extent['maxx'] - extent['minx']
|
|
|
|
ext_height = extent['maxy'] - extent['miny']
|
|
|
|
|
|
|
|
final_dem_resolution = (int(math.ceil(ext_width / float(resolution))),
|
|
|
|
int(math.ceil(ext_height / float(resolution))))
|
|
|
|
num_splits = int(math.ceil(max(final_dem_resolution) / float(max_tile_size)))
|
|
|
|
num_tiles = num_splits * num_splits
|
|
|
|
log.ODM_INFO("DEM resolution is %s, max tile size is %s, will split DEM generation into %s tiles" % (final_dem_resolution, max_tile_size, num_tiles))
|
|
|
|
|
|
|
|
tile_bounds_width = ext_width / float(num_splits)
|
|
|
|
tile_bounds_height = ext_height / float(num_splits)
|
|
|
|
|
|
|
|
tiles = []
|
|
|
|
|
|
|
|
for r in radiuses:
|
|
|
|
minx = extent['minx']
|
|
|
|
|
|
|
|
for x in range(num_splits):
|
|
|
|
miny = extent['miny']
|
|
|
|
if x == num_splits - 1:
|
|
|
|
maxx = extent['maxx']
|
|
|
|
else:
|
|
|
|
maxx = minx + tile_bounds_width
|
|
|
|
|
|
|
|
for y in range(num_splits):
|
|
|
|
if y == num_splits - 1:
|
|
|
|
maxy = extent['maxy']
|
|
|
|
else:
|
|
|
|
maxy = miny + tile_bounds_height
|
|
|
|
|
|
|
|
filename = os.path.join(os.path.abspath(outdir), '%s_r%s_x%s_y%s.tif' % (dem_type, r, x, y))
|
|
|
|
|
|
|
|
tiles.append({
|
|
|
|
'radius': r,
|
|
|
|
'bounds': {
|
|
|
|
'minx': minx,
|
|
|
|
'maxx': maxx,
|
|
|
|
'miny': miny,
|
|
|
|
'maxy': maxy
|
|
|
|
},
|
|
|
|
'filename': filename
|
|
|
|
})
|
|
|
|
|
|
|
|
miny = maxy
|
|
|
|
minx = maxx
|
|
|
|
|
|
|
|
# Sort tiles by increasing radius
|
|
|
|
tiles.sort(key=lambda t: float(t['radius']), reverse=True)
|
|
|
|
|
|
|
|
# pp = pprint.PrettyPrinter(indent=4)
|
|
|
|
# pp.pprint(queue)
|
|
|
|
# TODO: parallel queue
|
|
|
|
queue = tiles[:]
|
|
|
|
|
|
|
|
for q in queue:
|
|
|
|
log.ODM_INFO("Generating %s (%s, radius: %s, resolution: %s)" % (q['filename'], output_type, q['radius'], resolution))
|
|
|
|
|
|
|
|
d = pdal.json_gdal_base(q['filename'], output_type, q['radius'], resolution, q['bounds'])
|
|
|
|
|
|
|
|
if dem_type == 'dsm':
|
|
|
|
d = pdal.json_add_classification_filter(d, 2, equality='max')
|
|
|
|
elif dem_type == 'dtm':
|
|
|
|
d = pdal.json_add_classification_filter(d, 2)
|
|
|
|
|
|
|
|
if decimation is not None:
|
|
|
|
d = pdal.json_add_decimation_filter(d, decimation)
|
|
|
|
|
|
|
|
pdal.json_add_readers(d, [input_point_cloud])
|
|
|
|
pdal.run_pipeline(d, verbose=verbose)
|
|
|
|
|
2018-01-16 19:46:30 +00:00
|
|
|
|
2019-04-11 20:29:53 +00:00
|
|
|
output_file = "%s.tif" % dem_type
|
|
|
|
output_path = os.path.abspath(os.path.join(outdir, output_file))
|
2018-01-16 19:46:30 +00:00
|
|
|
|
2019-04-11 20:29:53 +00:00
|
|
|
# Verify tile results
|
|
|
|
for t in tiles:
|
|
|
|
if not os.path.exists(t['filename']):
|
|
|
|
raise Exception("Error creating %s, %s failed to be created" % (output_file, t['filename']))
|
|
|
|
|
|
|
|
# Create virtual raster
|
|
|
|
vrt_path = os.path.abspath(os.path.join(outdir, "merged.vrt"))
|
|
|
|
run('gdalbuildvrt "%s" "%s"' % (vrt_path, '" "'.join(map(lambda t: t['filename'], tiles))))
|
2018-01-16 19:46:30 +00:00
|
|
|
|
2019-04-11 20:29:53 +00:00
|
|
|
geotiff_path = os.path.abspath(os.path.join(outdir, 'merged.tiff'))
|
2018-01-16 19:46:30 +00:00
|
|
|
|
2019-04-11 20:29:53 +00:00
|
|
|
# Build GeoTIFF
|
|
|
|
kwargs = {
|
|
|
|
'max_memory': get_max_memory(),
|
|
|
|
'threads': max_workers if max_workers else 'ALL_CPUS',
|
|
|
|
'vrt': vrt_path,
|
|
|
|
'geotiff': geotiff_path
|
|
|
|
}
|
2018-01-16 20:23:19 +00:00
|
|
|
|
2019-04-11 20:29:53 +00:00
|
|
|
run('gdal_translate '
|
|
|
|
'-co NUM_THREADS={threads} '
|
|
|
|
'--config GDAL_CACHEMAX {max_memory}% '
|
|
|
|
'{vrt} {geotiff}'.format(**kwargs))
|
2018-01-16 20:23:19 +00:00
|
|
|
|
2019-04-11 20:29:53 +00:00
|
|
|
if gapfill:
|
|
|
|
gapfill_and_smooth(geotiff_path, output_path)
|
|
|
|
os.remove(geotiff_path)
|
|
|
|
else:
|
|
|
|
log.ODM_INFO("Skipping gap-fill interpolation")
|
|
|
|
os.rename(geotiff_path, output_path)
|
2018-01-16 20:23:19 +00:00
|
|
|
|
2019-04-11 20:29:53 +00:00
|
|
|
# TODO cleanup
|
2018-06-11 19:21:19 +00:00
|
|
|
|
2019-04-11 20:29:53 +00:00
|
|
|
log.ODM_INFO('Completed %s in %s' % (output_file, datetime.now() - start))
|
2018-01-16 20:23:19 +00:00
|
|
|
|
2018-01-16 19:46:30 +00:00
|
|
|
|
|
|
|
|
2019-04-11 20:29:53 +00:00
|
|
|
def gapfill_and_smooth(geotiff_path, output_path):
|
|
|
|
""" Gap fill with nearest neighbor interpolation and apply median smoothing """
|
2018-01-16 19:46:30 +00:00
|
|
|
start = datetime.now()
|
2018-06-11 19:21:19 +00:00
|
|
|
|
2019-04-11 20:29:53 +00:00
|
|
|
if not os.path.exists(geotiff_path):
|
|
|
|
raise Exception('File %s does not exist!' % geotiff_path)
|
2018-01-16 19:46:30 +00:00
|
|
|
|
2018-06-11 19:21:19 +00:00
|
|
|
log.ODM_INFO('Starting gap-filling with nearest interpolation...')
|
2018-01-16 19:46:30 +00:00
|
|
|
|
2019-04-11 20:29:53 +00:00
|
|
|
img = gippy.GeoImage(geotiff_path)
|
|
|
|
nodata = img[0].nodata()
|
|
|
|
arr = img[0].read()
|
2018-01-16 19:46:30 +00:00
|
|
|
|
2018-06-11 19:21:19 +00:00
|
|
|
# Nearest neighbor interpolation at bad points
|
|
|
|
indices = ndimage.distance_transform_edt(arr == nodata,
|
|
|
|
return_distances=False,
|
|
|
|
return_indices=True)
|
|
|
|
arr = arr[tuple(indices)]
|
2018-06-18 13:54:09 +00:00
|
|
|
|
2018-10-11 03:44:41 +00:00
|
|
|
# Median filter (careful, changing the value 5 might require tweaking)
|
|
|
|
# the lines below. There's another numpy function that takes care of
|
|
|
|
# these edge cases, but it's slower.
|
2018-06-18 13:54:09 +00:00
|
|
|
from scipy import signal
|
|
|
|
arr = signal.medfilt(arr, 5)
|
2018-06-11 19:21:19 +00:00
|
|
|
|
2018-10-11 03:44:41 +00:00
|
|
|
# Fill corner points with nearest value
|
|
|
|
if arr.shape >= (4, 4):
|
|
|
|
arr[0][:2] = arr[1][0] = arr[1][1]
|
|
|
|
arr[0][-2:] = arr[1][-1] = arr[2][-1]
|
|
|
|
arr[-1][:2] = arr[-2][0] = arr[-2][1]
|
|
|
|
arr[-1][-2:] = arr[-2][-1] = arr[-2][-2]
|
|
|
|
|
2018-01-16 19:46:30 +00:00
|
|
|
# write output
|
2019-04-11 20:29:53 +00:00
|
|
|
imgout = gippy.GeoImage.create_from(img, output_path)
|
2018-04-25 15:14:07 +00:00
|
|
|
imgout.set_nodata(nodata)
|
|
|
|
imgout[0].write(arr)
|
2019-04-11 20:29:53 +00:00
|
|
|
output_path = imgout.filename()
|
2018-01-16 19:46:30 +00:00
|
|
|
imgout = None
|
|
|
|
|
2019-04-11 20:29:53 +00:00
|
|
|
log.ODM_INFO('Completed gap-filling to create %s in %s' % (os.path.relpath(output_path), datetime.now() - start))
|
2018-01-16 19:46:30 +00:00
|
|
|
|
2019-04-11 20:29:53 +00:00
|
|
|
return output_path
|