Tiled DEM generation (WIP)

pull/921/head
Piero Toffanin 2019-04-11 16:29:53 -04:00
rodzic a41f0c64ee
commit 4fb27d6987
5 zmienionych plików z 219 dodań i 111 usunięć

Wyświetl plik

@ -1,6 +1,12 @@
import os, glob
import gippy
import numpy
import math
from opendm.system import run
from opendm import point_cloud
from opendm.concurrency import get_max_memory
import pprint
from scipy import ndimage
from datetime import datetime
from opendm import log
@ -21,96 +27,147 @@ def classify(lasFile, slope=0.15, cellsize=1, maxWindowSize=18, verbose=False):
return lasFile
def create_dems(filenames, demtype, radius=['0.56'], gapfill=False,
outdir='', suffix='', resolution=0.1, max_workers=None, **kwargs):
""" Create DEMS for multiple radii, and optionally gapfill """
fouts = []
create_dem_for_radius = partial(create_dem,
filenames, demtype,
outdir=outdir, suffix=suffix, resolution=resolution, **kwargs)
with get_reusable_executor(max_workers=max_workers, timeout=None) as e:
fouts = list(e.map(create_dem_for_radius, radius))
fnames = {}
# convert from list of dicts, to dict of lists
for product in fouts[0].keys():
fnames[product] = [f[product] for f in fouts]
fouts = fnames
def create_dem(input_point_cloud, dem_type, output_type='max', radiuses=['0.56'], gapfill=True,
outdir='', resolution=0.1, max_workers=None, max_tile_size=4096,
verbose=False, decimation=None):
""" Create DEM from multiple radii, and optionally gapfill """
start = datetime.now()
if not os.path.exists(outdir):
log.ODM_INFO("Creating %s" % outdir)
os.mkdir(outdir)
extent = point_cloud.get_extent(input_point_cloud)
log.ODM_INFO("Point cloud bounds are [minx: %s, maxx: %s] [miny: %s, maxy: %s]" % (extent['minx'], extent['maxx'], extent['miny'], extent['maxy']))
# extent = {
# 'maxx': 100,
# 'minx': 0,
# 'maxy': 100,
# 'miny': 0
# }
ext_width = extent['maxx'] - extent['minx']
ext_height = extent['maxy'] - extent['miny']
final_dem_resolution = (int(math.ceil(ext_width / float(resolution))),
int(math.ceil(ext_height / float(resolution))))
num_splits = int(math.ceil(max(final_dem_resolution) / float(max_tile_size)))
num_tiles = num_splits * num_splits
log.ODM_INFO("DEM resolution is %s, max tile size is %s, will split DEM generation into %s tiles" % (final_dem_resolution, max_tile_size, num_tiles))
tile_bounds_width = ext_width / float(num_splits)
tile_bounds_height = ext_height / float(num_splits)
tiles = []
for r in radiuses:
minx = extent['minx']
for x in range(num_splits):
miny = extent['miny']
if x == num_splits - 1:
maxx = extent['maxx']
else:
maxx = minx + tile_bounds_width
for y in range(num_splits):
if y == num_splits - 1:
maxy = extent['maxy']
else:
maxy = miny + tile_bounds_height
filename = os.path.join(os.path.abspath(outdir), '%s_r%s_x%s_y%s.tif' % (dem_type, r, x, y))
tiles.append({
'radius': r,
'bounds': {
'minx': minx,
'maxx': maxx,
'miny': miny,
'maxy': maxy
},
'filename': filename
})
miny = maxy
minx = maxx
# Sort tiles by increasing radius
tiles.sort(key=lambda t: float(t['radius']), reverse=True)
# pp = pprint.PrettyPrinter(indent=4)
# pp.pprint(queue)
# TODO: parallel queue
queue = tiles[:]
for q in queue:
log.ODM_INFO("Generating %s (%s, radius: %s, resolution: %s)" % (q['filename'], output_type, q['radius'], resolution))
d = pdal.json_gdal_base(q['filename'], output_type, q['radius'], resolution, q['bounds'])
if dem_type == 'dsm':
d = pdal.json_add_classification_filter(d, 2, equality='max')
elif dem_type == 'dtm':
d = pdal.json_add_classification_filter(d, 2)
if decimation is not None:
d = pdal.json_add_decimation_filter(d, decimation)
pdal.json_add_readers(d, [input_point_cloud])
pdal.run_pipeline(d, verbose=verbose)
output_file = "%s.tif" % dem_type
output_path = os.path.abspath(os.path.join(outdir, output_file))
# Verify tile results
for t in tiles:
if not os.path.exists(t['filename']):
raise Exception("Error creating %s, %s failed to be created" % (output_file, t['filename']))
# Create virtual raster
vrt_path = os.path.abspath(os.path.join(outdir, "merged.vrt"))
run('gdalbuildvrt "%s" "%s"' % (vrt_path, '" "'.join(map(lambda t: t['filename'], tiles))))
geotiff_path = os.path.abspath(os.path.join(outdir, 'merged.tiff'))
# Build GeoTIFF
kwargs = {
'max_memory': get_max_memory(),
'threads': max_workers if max_workers else 'ALL_CPUS',
'vrt': vrt_path,
'geotiff': geotiff_path
}
run('gdal_translate '
'-co NUM_THREADS={threads} '
'--config GDAL_CACHEMAX {max_memory}% '
'{vrt} {geotiff}'.format(**kwargs))
# gapfill all products
_fouts = {}
if gapfill:
for product in fouts.keys():
# output filename
fout = os.path.join(outdir, '%s%s.tif' % (demtype, suffix))
gap_fill(fouts[product], fout)
_fouts[product] = fout
gapfill_and_smooth(geotiff_path, output_path)
os.remove(geotiff_path)
else:
# only return single filename (first radius run)
for product in fouts.keys():
_fouts[product] = fouts[product][0]
log.ODM_INFO("Skipping gap-fill interpolation")
os.rename(geotiff_path, output_path)
return _fouts
def create_dem(filenames, demtype, radius, decimation=None,
products=['idw'], outdir='', suffix='', verbose=False, resolution=0.1):
""" Create DEM from collection of LAS files """
start = datetime.now()
# filename based on demtype, radius, and optional suffix
bname = os.path.join(os.path.abspath(outdir), '%s_r%s%s' % (demtype, radius, suffix))
ext = 'tif'
fouts = {o: bname + '.%s.%s' % (o, ext) for o in products}
prettyname = os.path.relpath(bname) + ' [%s]' % (' '.join(products))
log.ODM_INFO('Creating %s from %s files' % (prettyname, len(filenames)))
# JSON pipeline
json = pdal.json_gdal_base(bname, products, radius, resolution)
# TODO cleanup
if demtype == 'dsm':
json = pdal.json_add_classification_filter(json, 2, equality='max')
elif demtype == 'dtm':
json = pdal.json_add_classification_filter(json, 2)
if decimation is not None:
json = pdal.json_add_decimation_filter(json, decimation)
pdal.json_add_readers(json, filenames)
pdal.run_pipeline(json, verbose=verbose)
# verify existence of fout
exists = True
for f in fouts.values():
if not os.path.exists(f):
exists = False
if not exists:
raise Exception("Error creating dems: %s" % ' '.join(fouts))
log.ODM_INFO('Completed %s in %s' % (prettyname, datetime.now() - start))
return fouts
log.ODM_INFO('Completed %s in %s' % (output_file, datetime.now() - start))
def gap_fill(filenames, fout):
""" Gap fill from higher radius DTMs, then fill remainder with interpolation """
def gapfill_and_smooth(geotiff_path, output_path):
""" Gap fill with nearest neighbor interpolation and apply median smoothing """
start = datetime.now()
if len(filenames) == 0:
raise Exception('No filenames provided!')
if not os.path.exists(geotiff_path):
raise Exception('File %s does not exist!' % geotiff_path)
log.ODM_INFO('Starting gap-filling with nearest interpolation...')
filenames = sorted(filenames)
imgs = map(gippy.GeoImage, filenames)
nodata = imgs[0][0].nodata()
arr = imgs[0][0].read()
for i in range(1, len(imgs)):
locs = numpy.where(arr == nodata)
arr[locs] = imgs[i][0].read()[locs]
img = gippy.GeoImage(geotiff_path)
nodata = img[0].nodata()
arr = img[0].read()
# Nearest neighbor interpolation at bad points
indices = ndimage.distance_transform_edt(arr == nodata,
@ -132,12 +189,12 @@ def gap_fill(filenames, fout):
arr[-1][-2:] = arr[-2][-1] = arr[-2][-2]
# write output
imgout = gippy.GeoImage.create_from(imgs[0], fout)
imgout = gippy.GeoImage.create_from(img, output_path)
imgout.set_nodata(nodata)
imgout[0].write(arr)
fout = imgout.filename()
output_path = imgout.filename()
imgout = None
log.ODM_INFO('Completed gap-filling to create %s in %s' % (os.path.relpath(fout), datetime.now() - start))
log.ODM_INFO('Completed gap-filling to create %s in %s' % (os.path.relpath(output_path), datetime.now() - start))
return fout
return output_path

Wyświetl plik

@ -48,24 +48,23 @@ def json_base():
return {'pipeline': []}
def json_gdal_base(fout, output, radius, resolution=1):
def json_gdal_base(filename, output_type, radius, resolution=1, bounds=None):
""" Create initial JSON for PDAL pipeline containing a Writer element """
json = json_base()
if len(output) > 1:
# TODO: we might want to create a multiband raster with max/min/idw
# in the future
print "More than 1 output, will only create {0}".format(output[0])
output = [output[0]]
json['pipeline'].insert(0, {
d = {
'type': 'writers.gdal',
'resolution': resolution,
'radius': radius,
'filename': '{0}.{1}.tif'.format(fout, output[0]),
'output_type': output[0],
'filename': filename,
'output_type': output_type,
'data_type': 'float'
})
}
if bounds is not None:
d['bounds'] = "([%s,%s],[%s,%s])" % (bounds['minx'], bounds['maxx'], bounds['miny'], bounds['maxy'])
json['pipeline'].insert(0, d)
return json
@ -155,7 +154,6 @@ def run_pipeline(json, verbose=False):
cmd = [
'pdal',
'pipeline',
'--nostream',
'-i %s' % jsonfile
]
if verbose:

Wyświetl plik

@ -24,14 +24,14 @@ def create_25dmesh(inPointCloud, outMesh, dsm_radius=0.07, dsm_resolution=0.05,
log.ODM_INFO('Creating DSM for 2.5D mesh')
commands.create_dems(
[inPointCloud],
commands.create_dem(
inPointCloud,
'mesh_dsm',
radius=map(str, radius_steps),
output_type='max',
radiuses=map(str, radius_steps),
gapfill=True,
outdir=tmp_directory,
resolution=dsm_resolution,
products=['max'],
verbose=verbose,
max_workers=get_max_concurrency_for_dem(available_cores, inPointCloud)
)

Wyświetl plik

@ -1,9 +1,10 @@
import os, sys, shutil
import os, sys, shutil, tempfile, json
from opendm import system
from opendm import log
from opendm import context
from opendm.system import run
def filter(inputPointCloud, outputPointCloud, standard_deviation=2.5, meank=16, confidence=None, verbose=False):
def filter(input_point_cloud, output_point_cloud, standard_deviation=2.5, meank=16, confidence=None, verbose=False):
"""
Filters a point cloud
"""
@ -15,20 +16,20 @@ def filter(inputPointCloud, outputPointCloud, standard_deviation=2.5, meank=16,
if confidence:
log.ODM_INFO("Keeping only points with > %s confidence" % confidence)
if not os.path.exists(inputPointCloud):
log.ODM_ERROR("{} does not exist, cannot filter point cloud. The program will now exit.".format(inputPointCloud))
if not os.path.exists(input_point_cloud):
log.ODM_ERROR("{} does not exist, cannot filter point cloud. The program will now exit.".format(input_point_cloud))
sys.exit(1)
filter_program = os.path.join(context.odm_modules_path, 'odm_filterpoints')
if not os.path.exists(filter_program):
log.ODM_WARNING("{} program not found. Will skip filtering, but this installation should be fixed.")
shutil.copy(inputPointCloud, outputPointCloud)
shutil.copy(input_point_cloud, output_point_cloud)
return
filterArgs = {
'bin': filter_program,
'inputFile': inputPointCloud,
'outputFile': outputPointCloud,
'inputFile': input_point_cloud,
'outputFile': output_point_cloud,
'sd': standard_deviation,
'meank': meank,
'verbose': '-verbose' if verbose else '',
@ -41,5 +42,56 @@ def filter(inputPointCloud, outputPointCloud, standard_deviation=2.5, meank=16,
'-meank {meank} {confidence} {verbose} '.format(**filterArgs))
# Remove input file, swap temp file
if not os.path.exists(outputPointCloud):
log.ODM_WARNING("{} not found, filtering has failed.".format(outputPointCloud))
if not os.path.exists(output_point_cloud):
log.ODM_WARNING("{} not found, filtering has failed.".format(output_point_cloud))
def get_extent(input_point_cloud):
fd, json_file = tempfile.mkstemp(suffix='.json')
os.close(fd)
# Get point cloud extent
fallback = False
# We know PLY files do not have --summary support
if input_point_cloud.lower().endswith(".ply"):
fallback = True
run('pdal info {0} > {1}'.format(input_point_cloud, json_file))
try:
if not fallback:
run('pdal info --summary {0} > {1}'.format(input_point_cloud, json_file))
except:
fallback = True
run('pdal info {0} > {1}'.format(input_point_cloud, json_file))
bounds = {}
with open(json_file, 'r') as f:
result = json.loads(f.read())
if not fallback:
summary = result.get('summary')
if summary is None: raise Exception("Cannot compute summary for %s (summary key missing)" % input_point_cloud)
bounds = summary.get('bounds')
else:
stats = result.get('stats')
if stats is None: raise Exception("Cannot compute bounds for %s (stats key missing)" % input_point_cloud)
bbox = stats.get('bbox')
if bbox is None: raise Exception("Cannot compute bounds for %s (bbox key missing)" % input_point_cloud)
native = bbox.get('native')
if native is None: raise Exception("Cannot compute bounds for %s (native key missing)" % input_point_cloud)
bounds = native.get('bbox')
if bounds is None: raise Exception("Cannot compute bounds for %s (bounds key missing)" % input_point_cloud)
if bounds.get('maxx', None) is None or \
bounds.get('minx', None) is None or \
bounds.get('maxy', None) is None or \
bounds.get('miny', None) is None or \
bounds.get('maxz', None) is None or \
bounds.get('minz', None) is None:
raise Exception("Cannot compute bounds for %s (invalid keys) %s" % (input_point_cloud, str(bounds)))
os.remove(json_file)
return bounds

Wyświetl plik

@ -86,11 +86,12 @@ class ODMDEMCell(ecto.Cell):
radius_steps.append(radius_steps[-1] * 2) # 2 is arbitrary, maybe there's a better value?
for product in products:
commands.create_dems(
[tree.odm_georeferencing_model_laz],
commands.create_dem(
tree.odm_georeferencing_model_laz,
product,
radius=map(str, radius_steps),
gapfill=True,
output_type='idw' if product == 'dtm' else 'max'
radiuses=map(str, radius_steps),
gapfill=args.dem_gapfill_steps > 0,
outdir=odm_dem_root,
resolution=resolution / 100.0,
decimation=args.dem_decimation,