2020-07-07 18:20:57 +00:00
|
|
|
import os, sys, shutil, tempfile, json, math
|
2019-03-06 00:03:04 +00:00
|
|
|
from opendm import system
|
|
|
|
from opendm import log
|
|
|
|
from opendm import context
|
2019-04-11 20:29:53 +00:00
|
|
|
from opendm.system import run
|
2019-10-29 18:25:12 +00:00
|
|
|
from opendm import entwine
|
|
|
|
from opendm import io
|
2020-07-07 20:14:55 +00:00
|
|
|
from opendm.concurrency import parallel_map
|
2019-10-29 18:25:12 +00:00
|
|
|
from pipes import quote
|
2019-03-06 00:03:04 +00:00
|
|
|
|
2020-07-07 18:20:57 +00:00
|
|
|
def ply_info(input_ply):
|
2020-07-07 15:29:25 +00:00
|
|
|
if not os.path.exists(input_ply):
|
2020-09-08 17:08:57 +00:00
|
|
|
raise IOError("%s does not exist" % input_ply)
|
2020-07-07 15:29:25 +00:00
|
|
|
|
|
|
|
# Read PLY header, check if point cloud has normals
|
|
|
|
has_normals = False
|
2020-07-07 18:20:57 +00:00
|
|
|
vertex_count = 0
|
|
|
|
|
2020-09-09 17:23:53 +00:00
|
|
|
with open(input_ply, 'r', errors='ignore') as f:
|
2020-07-07 15:29:25 +00:00
|
|
|
line = f.readline().strip().lower()
|
|
|
|
i = 0
|
2020-07-07 20:14:55 +00:00
|
|
|
while line != "end_header":
|
2020-07-07 15:29:25 +00:00
|
|
|
line = f.readline().strip().lower()
|
|
|
|
props = line.split(" ")
|
2020-07-07 18:20:57 +00:00
|
|
|
if len(props) == 3:
|
|
|
|
if props[0] == "property" and props[2] in ["nx", "normalx", "normal_x"]:
|
|
|
|
has_normals = True
|
|
|
|
elif props[0] == "element" and props[1] == "vertex":
|
|
|
|
vertex_count = int(props[2])
|
2020-07-07 15:29:25 +00:00
|
|
|
i += 1
|
2020-07-07 20:14:55 +00:00
|
|
|
if i > 100:
|
|
|
|
raise IOError("Cannot find end_header field. Invalid PLY?")
|
|
|
|
|
2020-07-07 15:29:25 +00:00
|
|
|
|
2020-07-07 18:20:57 +00:00
|
|
|
return {
|
|
|
|
'has_normals': has_normals,
|
|
|
|
'vertex_count': vertex_count,
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
def split(input_point_cloud, outdir, filename_template, capacity, dims=None):
|
|
|
|
log.ODM_INFO("Splitting point cloud filtering in chunks of {} vertices".format(capacity))
|
|
|
|
|
|
|
|
if not os.path.exists(input_point_cloud):
|
|
|
|
log.ODM_ERROR("{} does not exist, cannot split point cloud. The program will now exit.".format(input_point_cloud))
|
|
|
|
sys.exit(1)
|
|
|
|
|
|
|
|
if not os.path.exists(outdir):
|
|
|
|
system.mkdir_p(outdir)
|
2020-07-07 15:29:25 +00:00
|
|
|
|
2020-07-07 18:20:57 +00:00
|
|
|
if len(os.listdir(outdir)) != 0:
|
|
|
|
log.ODM_ERROR("%s already contains some files. The program will now exit.".format(outdir))
|
|
|
|
sys.exit(1)
|
|
|
|
|
|
|
|
cmd = 'pdal split -i "%s" -o "%s" --capacity %s ' % (input_point_cloud, os.path.join(outdir, filename_template), capacity)
|
|
|
|
|
|
|
|
if filename_template.endswith(".ply"):
|
|
|
|
cmd += ("--writers.ply.sized_types=false "
|
|
|
|
"--writers.ply.storage_mode='little endian' ")
|
|
|
|
if dims is not None:
|
|
|
|
cmd += '--writers.ply.dims="%s"' % dims
|
|
|
|
system.run(cmd)
|
|
|
|
|
|
|
|
return [os.path.join(outdir, f) for f in os.listdir(outdir)]
|
|
|
|
|
|
|
|
|
|
|
|
def filter(input_point_cloud, output_point_cloud, standard_deviation=2.5, meank=16, sample_radius=0, verbose=False, max_concurrency=1):
|
2019-03-06 00:03:04 +00:00
|
|
|
"""
|
2019-04-03 18:47:06 +00:00
|
|
|
Filters a point cloud
|
2019-03-06 00:03:04 +00:00
|
|
|
"""
|
2020-07-02 02:34:36 +00:00
|
|
|
if not os.path.exists(input_point_cloud):
|
|
|
|
log.ODM_ERROR("{} does not exist. The program will now exit.".format(input_point_cloud))
|
|
|
|
sys.exit(1)
|
|
|
|
|
2019-10-28 13:53:46 +00:00
|
|
|
if (standard_deviation <= 0 or meank <= 0) and sample_radius <= 0:
|
2019-03-06 00:03:04 +00:00
|
|
|
log.ODM_INFO("Skipping point cloud filtering")
|
2020-07-02 02:34:36 +00:00
|
|
|
# if using the option `--pc-filter 0`, we need copy input_point_cloud
|
|
|
|
shutil.copy(input_point_cloud, output_point_cloud)
|
2019-03-06 00:03:04 +00:00
|
|
|
return
|
|
|
|
|
2020-07-07 15:29:25 +00:00
|
|
|
filters = []
|
2019-03-06 00:03:04 +00:00
|
|
|
|
2019-10-28 13:53:46 +00:00
|
|
|
if sample_radius > 0:
|
|
|
|
log.ODM_INFO("Sampling points around a %sm radius" % sample_radius)
|
2020-07-07 15:29:25 +00:00
|
|
|
filters.append('sample')
|
2019-10-28 13:53:46 +00:00
|
|
|
|
2020-07-07 15:29:25 +00:00
|
|
|
if standard_deviation > 0 and meank > 0:
|
2020-07-07 18:20:57 +00:00
|
|
|
log.ODM_INFO("Filtering {} (statistical, meanK {}, standard deviation {})".format(input_point_cloud, meank, standard_deviation))
|
2020-07-07 15:29:25 +00:00
|
|
|
filters.append('outlier')
|
|
|
|
|
|
|
|
if len(filters) > 0:
|
|
|
|
filters.append('range')
|
|
|
|
|
2020-07-07 18:20:57 +00:00
|
|
|
info = ply_info(input_point_cloud)
|
2020-07-07 15:29:25 +00:00
|
|
|
dims = "x=float,y=float,z=float,"
|
2020-07-07 18:20:57 +00:00
|
|
|
if info['has_normals']:
|
2020-07-07 15:29:25 +00:00
|
|
|
dims += "nx=float,ny=float,nz=float,"
|
|
|
|
dims += "red=uchar,blue=uchar,green=uchar"
|
2019-03-06 00:03:04 +00:00
|
|
|
|
2020-07-07 18:20:57 +00:00
|
|
|
if info['vertex_count'] == 0:
|
|
|
|
log.ODM_ERROR("Cannot read vertex count for {}".format(input_point_cloud))
|
|
|
|
sys.exit(1)
|
2020-07-07 15:29:25 +00:00
|
|
|
|
2020-07-07 18:20:57 +00:00
|
|
|
# Do we need to split this?
|
2020-07-09 14:03:11 +00:00
|
|
|
VERTEX_THRESHOLD = 250000
|
2020-07-07 21:33:00 +00:00
|
|
|
should_split = max_concurrency > 1 and info['vertex_count'] > VERTEX_THRESHOLD*2
|
2020-07-07 18:20:57 +00:00
|
|
|
|
|
|
|
if should_split:
|
|
|
|
partsdir = os.path.join(os.path.dirname(output_point_cloud), "parts")
|
|
|
|
if os.path.exists(partsdir):
|
|
|
|
log.ODM_WARNING("Removing existing directory %s" % partsdir)
|
|
|
|
shutil.rmtree(partsdir)
|
|
|
|
|
2020-07-07 21:33:00 +00:00
|
|
|
point_cloud_submodels = split(input_point_cloud, partsdir, "part.ply", capacity=VERTEX_THRESHOLD, dims=dims)
|
2020-07-07 18:20:57 +00:00
|
|
|
|
2020-07-07 20:14:55 +00:00
|
|
|
def run_filter(pcs):
|
2020-07-07 18:20:57 +00:00
|
|
|
# Recurse
|
2020-07-07 20:14:55 +00:00
|
|
|
filter(pcs['path'], io.related_file_path(pcs['path'], postfix="_filtered"),
|
2020-07-07 18:20:57 +00:00
|
|
|
standard_deviation=standard_deviation,
|
|
|
|
meank=meank,
|
|
|
|
sample_radius=sample_radius,
|
|
|
|
verbose=verbose,
|
|
|
|
max_concurrency=1)
|
2020-07-07 20:14:55 +00:00
|
|
|
# Filter
|
|
|
|
parallel_map(run_filter, [{'path': p} for p in point_cloud_submodels], max_concurrency)
|
2020-07-07 18:20:57 +00:00
|
|
|
|
|
|
|
# Merge
|
|
|
|
log.ODM_INFO("Merging %s point cloud chunks to %s" % (len(point_cloud_submodels), output_point_cloud))
|
|
|
|
filtered_pcs = [io.related_file_path(pcs, postfix="_filtered") for pcs in point_cloud_submodels]
|
2020-07-07 20:14:55 +00:00
|
|
|
#merge_ply(filtered_pcs, output_point_cloud, dims)
|
|
|
|
fast_merge_ply(filtered_pcs, output_point_cloud)
|
2020-07-07 18:20:57 +00:00
|
|
|
|
2020-07-07 20:14:55 +00:00
|
|
|
if os.path.exists(partsdir):
|
|
|
|
shutil.rmtree(partsdir)
|
2020-07-07 18:20:57 +00:00
|
|
|
else:
|
|
|
|
# Process point cloud (or a point cloud submodel) in a single step
|
|
|
|
filterArgs = {
|
|
|
|
'inputFile': input_point_cloud,
|
|
|
|
'outputFile': output_point_cloud,
|
|
|
|
'stages': " ".join(filters),
|
|
|
|
'dims': dims
|
|
|
|
}
|
|
|
|
|
|
|
|
cmd = ("pdal translate -i \"{inputFile}\" "
|
|
|
|
"-o \"{outputFile}\" "
|
|
|
|
"{stages} "
|
|
|
|
"--writers.ply.sized_types=false "
|
|
|
|
"--writers.ply.storage_mode='little endian' "
|
|
|
|
"--writers.ply.dims=\"{dims}\" "
|
|
|
|
"").format(**filterArgs)
|
|
|
|
|
|
|
|
if 'sample' in filters:
|
|
|
|
cmd += "--filters.sample.radius={} ".format(sample_radius)
|
|
|
|
|
|
|
|
if 'outlier' in filters:
|
|
|
|
cmd += ("--filters.outlier.method='statistical' "
|
|
|
|
"--filters.outlier.mean_k={} "
|
|
|
|
"--filters.outlier.multiplier={} ").format(meank, standard_deviation)
|
|
|
|
|
|
|
|
if 'range' in filters:
|
|
|
|
# Remove outliers
|
|
|
|
cmd += "--filters.range.limits='Classification![7:7]' "
|
2020-07-07 15:29:25 +00:00
|
|
|
|
2020-07-07 18:20:57 +00:00
|
|
|
system.run(cmd)
|
2019-03-06 00:03:04 +00:00
|
|
|
|
2019-04-11 20:29:53 +00:00
|
|
|
if not os.path.exists(output_point_cloud):
|
|
|
|
log.ODM_WARNING("{} not found, filtering has failed.".format(output_point_cloud))
|
|
|
|
|
2020-07-07 18:20:57 +00:00
|
|
|
|
2019-04-11 20:29:53 +00:00
|
|
|
def get_extent(input_point_cloud):
|
|
|
|
fd, json_file = tempfile.mkstemp(suffix='.json')
|
|
|
|
os.close(fd)
|
|
|
|
|
|
|
|
# Get point cloud extent
|
|
|
|
fallback = False
|
|
|
|
|
|
|
|
# We know PLY files do not have --summary support
|
|
|
|
if input_point_cloud.lower().endswith(".ply"):
|
|
|
|
fallback = True
|
|
|
|
run('pdal info {0} > {1}'.format(input_point_cloud, json_file))
|
|
|
|
|
|
|
|
try:
|
|
|
|
if not fallback:
|
|
|
|
run('pdal info --summary {0} > {1}'.format(input_point_cloud, json_file))
|
|
|
|
except:
|
|
|
|
fallback = True
|
|
|
|
run('pdal info {0} > {1}'.format(input_point_cloud, json_file))
|
|
|
|
|
|
|
|
bounds = {}
|
|
|
|
with open(json_file, 'r') as f:
|
|
|
|
result = json.loads(f.read())
|
|
|
|
|
|
|
|
if not fallback:
|
|
|
|
summary = result.get('summary')
|
|
|
|
if summary is None: raise Exception("Cannot compute summary for %s (summary key missing)" % input_point_cloud)
|
|
|
|
bounds = summary.get('bounds')
|
|
|
|
else:
|
|
|
|
stats = result.get('stats')
|
|
|
|
if stats is None: raise Exception("Cannot compute bounds for %s (stats key missing)" % input_point_cloud)
|
|
|
|
bbox = stats.get('bbox')
|
|
|
|
if bbox is None: raise Exception("Cannot compute bounds for %s (bbox key missing)" % input_point_cloud)
|
|
|
|
native = bbox.get('native')
|
|
|
|
if native is None: raise Exception("Cannot compute bounds for %s (native key missing)" % input_point_cloud)
|
|
|
|
bounds = native.get('bbox')
|
|
|
|
|
|
|
|
if bounds is None: raise Exception("Cannot compute bounds for %s (bounds key missing)" % input_point_cloud)
|
|
|
|
|
|
|
|
if bounds.get('maxx', None) is None or \
|
|
|
|
bounds.get('minx', None) is None or \
|
|
|
|
bounds.get('maxy', None) is None or \
|
|
|
|
bounds.get('miny', None) is None or \
|
|
|
|
bounds.get('maxz', None) is None or \
|
|
|
|
bounds.get('minz', None) is None:
|
|
|
|
raise Exception("Cannot compute bounds for %s (invalid keys) %s" % (input_point_cloud, str(bounds)))
|
|
|
|
|
|
|
|
os.remove(json_file)
|
2019-10-29 18:25:12 +00:00
|
|
|
return bounds
|
|
|
|
|
|
|
|
|
|
|
|
def merge(input_point_cloud_files, output_file, rerun=False):
|
|
|
|
num_files = len(input_point_cloud_files)
|
|
|
|
if num_files == 0:
|
|
|
|
log.ODM_WARNING("No input point cloud files to process")
|
|
|
|
return
|
|
|
|
|
2020-07-07 18:20:57 +00:00
|
|
|
if io.file_exists(output_file):
|
2019-10-29 18:25:12 +00:00
|
|
|
log.ODM_WARNING("Removing previous point cloud: %s" % output_file)
|
|
|
|
os.remove(output_file)
|
|
|
|
|
|
|
|
kwargs = {
|
|
|
|
'all_inputs': " ".join(map(quote, input_point_cloud_files)),
|
|
|
|
'output': output_file
|
|
|
|
}
|
|
|
|
|
|
|
|
system.run('lasmerge -i {all_inputs} -o "{output}"'.format(**kwargs))
|
2019-04-11 20:29:53 +00:00
|
|
|
|
|
|
|
|
2020-07-07 20:14:55 +00:00
|
|
|
def fast_merge_ply(input_point_cloud_files, output_file):
|
|
|
|
# Assumes that all input files share the same header/content format
|
|
|
|
# As the merge is a naive byte stream copy
|
|
|
|
|
|
|
|
num_files = len(input_point_cloud_files)
|
|
|
|
if num_files == 0:
|
|
|
|
log.ODM_WARNING("No input point cloud files to process")
|
|
|
|
return
|
|
|
|
|
|
|
|
if io.file_exists(output_file):
|
|
|
|
log.ODM_WARNING("Removing previous point cloud: %s" % output_file)
|
|
|
|
os.remove(output_file)
|
|
|
|
|
|
|
|
vertex_count = sum([ply_info(pcf)['vertex_count'] for pcf in input_point_cloud_files])
|
|
|
|
master_file = input_point_cloud_files[0]
|
|
|
|
with open(output_file, "wb") as out:
|
2020-09-09 17:23:53 +00:00
|
|
|
with open(master_file, "r", errors="ignore") as fhead:
|
2020-07-07 20:14:55 +00:00
|
|
|
# Copy header
|
|
|
|
line = fhead.readline()
|
2020-09-09 17:23:53 +00:00
|
|
|
out.write(line.encode('utf8'))
|
2020-07-07 20:14:55 +00:00
|
|
|
|
|
|
|
i = 0
|
|
|
|
while line.strip().lower() != "end_header":
|
|
|
|
line = fhead.readline()
|
|
|
|
|
|
|
|
# Intercept element vertex field
|
|
|
|
if line.lower().startswith("element vertex "):
|
2020-09-09 17:23:53 +00:00
|
|
|
out.write(("element vertex %s\n" % vertex_count).encode('utf8'))
|
|
|
|
else:
|
|
|
|
out.write(line.encode('utf8'))
|
2020-07-07 20:14:55 +00:00
|
|
|
|
|
|
|
i += 1
|
|
|
|
if i > 100:
|
|
|
|
raise IOError("Cannot find end_header field. Invalid PLY?")
|
|
|
|
|
|
|
|
for ipc in input_point_cloud_files:
|
|
|
|
i = 0
|
|
|
|
with open(ipc, "rb") as fin:
|
|
|
|
# Skip header
|
|
|
|
line = fin.readline()
|
2020-09-09 17:23:53 +00:00
|
|
|
while line.strip().lower() != b"end_header":
|
2020-07-07 20:14:55 +00:00
|
|
|
line = fin.readline()
|
|
|
|
|
|
|
|
i += 1
|
|
|
|
if i > 100:
|
|
|
|
raise IOError("Cannot find end_header field. Invalid PLY?")
|
|
|
|
|
|
|
|
# Write fields
|
|
|
|
out.write(fin.read())
|
|
|
|
|
|
|
|
return output_file
|
|
|
|
|
|
|
|
|
2020-07-07 18:20:57 +00:00
|
|
|
def merge_ply(input_point_cloud_files, output_file, dims=None):
|
|
|
|
num_files = len(input_point_cloud_files)
|
|
|
|
if num_files == 0:
|
|
|
|
log.ODM_WARNING("No input point cloud files to process")
|
|
|
|
return
|
|
|
|
|
|
|
|
cmd = [
|
|
|
|
'pdal',
|
|
|
|
'merge',
|
|
|
|
'--writers.ply.sized_types=false',
|
|
|
|
'--writers.ply.storage_mode="little endian"',
|
|
|
|
('--writers.ply.dims="%s"' % dims) if dims is not None else '',
|
|
|
|
' '.join(map(quote, input_point_cloud_files + [output_file])),
|
|
|
|
]
|
|
|
|
|
|
|
|
system.run(' '.join(cmd))
|
|
|
|
|
2019-10-29 18:25:12 +00:00
|
|
|
def post_point_cloud_steps(args, tree):
|
|
|
|
# XYZ point cloud output
|
|
|
|
if args.pc_csv:
|
|
|
|
log.ODM_INFO("Creating geo-referenced CSV file (XYZ format)")
|
|
|
|
|
|
|
|
system.run("pdal translate -i \"{}\" "
|
|
|
|
"-o \"{}\" "
|
|
|
|
"--writers.text.format=csv "
|
|
|
|
"--writers.text.order=\"X,Y,Z\" "
|
|
|
|
"--writers.text.keep_unspecified=false ".format(
|
|
|
|
tree.odm_georeferencing_model_laz,
|
|
|
|
tree.odm_georeferencing_xyz_file))
|
|
|
|
|
|
|
|
# LAS point cloud output
|
|
|
|
if args.pc_las:
|
|
|
|
log.ODM_INFO("Creating geo-referenced LAS file")
|
|
|
|
|
|
|
|
system.run("pdal translate -i \"{}\" "
|
|
|
|
"-o \"{}\" ".format(
|
|
|
|
tree.odm_georeferencing_model_laz,
|
|
|
|
tree.odm_georeferencing_model_las))
|
|
|
|
|
|
|
|
# EPT point cloud output
|
|
|
|
if args.pc_ept:
|
|
|
|
log.ODM_INFO("Creating geo-referenced Entwine Point Tile output")
|
|
|
|
entwine.build([tree.odm_georeferencing_model_laz], tree.entwine_pointcloud, max_concurrency=args.max_concurrency, rerun=False)
|