kopia lustrzana https://github.com/markqvist/LibAPRS
Added dynamic switching to 300 baud TX
rodzic
d9797bb285
commit
23b912827b
|
@ -30,7 +30,7 @@ void AFSK_hw_init(void) {
|
|||
|
||||
AFSK_hw_refDetect();
|
||||
|
||||
TCCR1A = 0;
|
||||
TCCR1A = 0;
|
||||
TCCR1B = _BV(CS10) | _BV(WGM13) | _BV(WGM12);
|
||||
ICR1 = (((CPU_FREQ+FREQUENCY_CORRECTION)) / 9600) - 1;
|
||||
|
||||
|
@ -45,7 +45,7 @@ void AFSK_hw_init(void) {
|
|||
DIDR0 |= _BV(0);
|
||||
ADCSRB = _BV(ADTS2) |
|
||||
_BV(ADTS1) |
|
||||
_BV(ADTS0);
|
||||
_BV(ADTS0);
|
||||
ADCSRA = _BV(ADEN) |
|
||||
_BV(ADSC) |
|
||||
_BV(ADATE)|
|
||||
|
@ -62,33 +62,37 @@ void AFSK_init(Afsk *afsk) {
|
|||
memset(afsk, 0, sizeof(*afsk));
|
||||
AFSK_modem = afsk;
|
||||
// Set phase increment
|
||||
afsk->phaseInc = MARK_INC;
|
||||
afsk->dataRate = 1200;
|
||||
afsk->phaseInc = MARK_INC_1200;
|
||||
// Initialise FIFO buffers
|
||||
fifo_init(&afsk->delayFifo, (uint8_t *)afsk->delayBuf, sizeof(afsk->delayBuf));
|
||||
fifo_init(&afsk->rxFifo, afsk->rxBuf, sizeof(afsk->rxBuf));
|
||||
fifo_init(&afsk->txFifo, afsk->txBuf, sizeof(afsk->txBuf));
|
||||
|
||||
// Fill delay FIFO with zeroes
|
||||
for (int i = 0; i<SAMPLESPERBIT / 2; i++) {
|
||||
for (int i = 0; i<SAMPLESPERBIT_300 / 2; i++) {
|
||||
fifo_push(&afsk->delayFifo, 0);
|
||||
}
|
||||
|
||||
AFSK_hw_init();
|
||||
}
|
||||
|
||||
void AFSK_setDataRate(Afsk *afsk, uint16_t dataRate) {
|
||||
afsk->dataRate = dataRate;
|
||||
}
|
||||
|
||||
static void AFSK_txStart(Afsk *afsk) {
|
||||
if (!afsk->sending) {
|
||||
afsk->phaseInc = MARK_INC;
|
||||
afsk->phaseInc = afsk->dataRate == 1200 ? MARK_INC_1200 : MARK_INC_300;
|
||||
afsk->phaseAcc = 0;
|
||||
afsk->bitstuffCount = 0;
|
||||
afsk->sending = true;
|
||||
LED_TX_ON();
|
||||
afsk->preambleLength = DIV_ROUND(custom_preamble * BITRATE, 8000);
|
||||
afsk->preambleLength = DIV_ROUND(custom_preamble * afsk->dataRate, 8000);
|
||||
AFSK_DAC_IRQ_START();
|
||||
}
|
||||
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
||||
afsk->tailLength = DIV_ROUND(custom_tail * BITRATE, 8000);
|
||||
afsk->tailLength = DIV_ROUND(custom_tail * afsk->dataRate, 8000);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -154,18 +158,18 @@ uint8_t AFSK_dac_isr(Afsk *afsk) {
|
|||
|
||||
if (afsk->bitStuff && afsk->bitstuffCount >= BIT_STUFF_LEN) {
|
||||
afsk->bitstuffCount = 0;
|
||||
afsk->phaseInc = SWITCH_TONE(afsk->phaseInc);
|
||||
afsk->phaseInc = (afsk->dataRate == 1200) ? SWITCH_TONE_1200(afsk->phaseInc) : SWITCH_TONE_300(afsk->phaseInc);
|
||||
} else {
|
||||
if (afsk->currentOutputByte & afsk->txBit) {
|
||||
afsk->bitstuffCount++;
|
||||
} else {
|
||||
afsk->bitstuffCount = 0;
|
||||
afsk->phaseInc = SWITCH_TONE(afsk->phaseInc);
|
||||
afsk->phaseInc = (afsk->dataRate == 1200) ? SWITCH_TONE_1200(afsk->phaseInc) : SWITCH_TONE_300(afsk->phaseInc);
|
||||
}
|
||||
afsk->txBit <<= 1;
|
||||
}
|
||||
|
||||
afsk->sampleIndex = SAMPLESPERBIT;
|
||||
afsk->sampleIndex = (afsk->dataRate == 1200) ? SAMPLESPERBIT_1200 : SAMPLESPERBIT_300;
|
||||
}
|
||||
|
||||
afsk->phaseAcc += afsk->phaseInc;
|
||||
|
@ -184,7 +188,7 @@ static bool hdlcParse(Hdlc *hdlc, bool bit, FIFOBuffer *fifo) {
|
|||
// the left by one bit, to make room for the
|
||||
// next incoming bit
|
||||
hdlc->demodulatedBits <<= 1;
|
||||
// And then put the newest bit from the
|
||||
// And then put the newest bit from the
|
||||
// demodulator into the byte.
|
||||
hdlc->demodulatedBits |= bit ? 1 : 0;
|
||||
|
||||
|
@ -205,9 +209,9 @@ static bool hdlcParse(Hdlc *hdlc, bool bit, FIFOBuffer *fifo) {
|
|||
}
|
||||
} else {
|
||||
// If the buffer is full, we have a problem
|
||||
// and abort by setting the return value to
|
||||
// and abort by setting the return value to
|
||||
// false and stopping the here.
|
||||
|
||||
|
||||
ret = false;
|
||||
hdlc->receiving = false;
|
||||
LED_RX_OFF();
|
||||
|
@ -255,7 +259,7 @@ static bool hdlcParse(Hdlc *hdlc, bool bit, FIFOBuffer *fifo) {
|
|||
// a control character. Therefore, if we detect such a
|
||||
// "stuffed bit", we simply ignore it and wait for the
|
||||
// next bit to come in.
|
||||
//
|
||||
//
|
||||
// We do the detection by applying an AND bit-mask to the
|
||||
// stream of demodulated bits. This mask is 00111111 (0x3f)
|
||||
// if the result of the operation is 00111110 (0x3e), we
|
||||
|
@ -333,7 +337,7 @@ void AFSK_adc_isr(Afsk *afsk, int8_t currentSample) {
|
|||
afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) >> 2;
|
||||
|
||||
afsk->iirY[0] = afsk->iirY[1];
|
||||
|
||||
|
||||
afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + (afsk->iirY[0] >> 1); // Chebyshev filter
|
||||
|
||||
|
||||
|
@ -347,7 +351,7 @@ void AFSK_adc_isr(Afsk *afsk, int8_t currentSample) {
|
|||
fifo_push(&afsk->delayFifo, currentSample);
|
||||
|
||||
// We need to check whether there is a signal transition.
|
||||
// If there is, we can recalibrate the phase of our
|
||||
// If there is, we can recalibrate the phase of our
|
||||
// sampler to stay in sync with the transmitter. A bit of
|
||||
// explanation is required to understand how this works.
|
||||
// Since we have PHASE_MAX/PHASE_BITS = 8 samples per bit,
|
||||
|
@ -363,13 +367,13 @@ void AFSK_adc_isr(Afsk *afsk, int8_t currentSample) {
|
|||
// Past Future
|
||||
// 0000000011111111000000001111111100000000
|
||||
// |________|
|
||||
// ||
|
||||
// ||
|
||||
// Window
|
||||
//
|
||||
// Every time we detect a signal transition, we adjust
|
||||
// where this window is positioned little. How much we
|
||||
// adjust it is defined by PHASE_INC. If our current phase
|
||||
// phase counter value is less than half of PHASE_MAX (ie,
|
||||
// phase counter value is less than half of PHASE_MAX (ie,
|
||||
// the window size) when a signal transition is detected,
|
||||
// add PHASE_INC to our phase counter, effectively moving
|
||||
// the window a little bit backward (to the left in the
|
||||
|
@ -380,7 +384,7 @@ void AFSK_adc_isr(Afsk *afsk, int8_t currentSample) {
|
|||
// our timing to the transmitter, even if it's timing is
|
||||
// a little off compared to our own.
|
||||
if (SIGNAL_TRANSITIONED(afsk->sampledBits)) {
|
||||
if (afsk->currentPhase < PHASE_THRESHOLD) {
|
||||
if (afsk->currentPhase < PHASE_THRESHOLD_1200) {
|
||||
afsk->currentPhase += PHASE_INC;
|
||||
} else {
|
||||
afsk->currentPhase -= PHASE_INC;
|
||||
|
@ -392,10 +396,10 @@ void AFSK_adc_isr(Afsk *afsk, int8_t currentSample) {
|
|||
|
||||
// Check if we have reached the end of
|
||||
// our sampling window.
|
||||
if (afsk->currentPhase >= PHASE_MAX) {
|
||||
if (afsk->currentPhase >= PHASE_MAX_1200) {
|
||||
// If we have, wrap around our phase
|
||||
// counter by modulus
|
||||
afsk->currentPhase %= PHASE_MAX;
|
||||
afsk->currentPhase %= PHASE_MAX_1200;
|
||||
|
||||
// Bitshift to make room for the next
|
||||
// bit in our stream of demodulated bits
|
||||
|
@ -462,7 +466,7 @@ ISR(ADC_vect) {
|
|||
TIFR1 = _BV(ICF1);
|
||||
AFSK_adc_isr(AFSK_modem, ((int16_t)((ADC) >> 2) - 128));
|
||||
if (hw_afsk_dac_isr) {
|
||||
DAC_PORT = (AFSK_dac_isr(AFSK_modem) & 0xF0) | _BV(3);
|
||||
DAC_PORT = (AFSK_dac_isr(AFSK_modem) & 0xF0) | _BV(3);
|
||||
} else {
|
||||
DAC_PORT = 128;
|
||||
}
|
||||
|
@ -472,4 +476,4 @@ ISR(ADC_vect) {
|
|||
poll_timer = 0;
|
||||
APRS_poll();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -29,8 +29,9 @@ inline static uint8_t sinSample(uint16_t i) {
|
|||
return (i >= (SIN_LEN/2)) ? (255 - sine) : sine;
|
||||
}
|
||||
|
||||
|
||||
#define SWITCH_TONE(inc) (((inc) == MARK_INC) ? SPACE_INC : MARK_INC)
|
||||
#define DIV_ROUND(dividend, divisor) (((dividend) + (divisor) / 2) / (divisor))
|
||||
#define SWITCH_TONE_300(inc) (((inc) == MARK_INC_300) ? SPACE_INC_300 : MARK_INC_300)
|
||||
#define SWITCH_TONE_1200(inc) (((inc) == MARK_INC_1200) ? SPACE_INC_1200 : MARK_INC_1200)
|
||||
#define BITS_DIFFER(bits1, bits2) (((bits1)^(bits2)) & 0x01)
|
||||
#define DUAL_XOR(bits1, bits2) ((((bits1)^(bits2)) & 0x03) == 0x03)
|
||||
#define SIGNAL_TRANSITIONED(bits) DUAL_XOR((bits), (bits) >> 2)
|
||||
|
@ -44,15 +45,23 @@ inline static uint8_t sinSample(uint16_t i) {
|
|||
#define CONFIG_AFSK_PREAMBLE_LEN 150UL
|
||||
#define CONFIG_AFSK_TRAILER_LEN 50UL
|
||||
#define SAMPLERATE 9600
|
||||
#define BITRATE 1200
|
||||
#define SAMPLESPERBIT (SAMPLERATE / BITRATE)
|
||||
#define SAMPLESPERBIT_1200 (SAMPLERATE / 1200)
|
||||
#define SAMPLESPERBIT_300 (SAMPLERATE / 300)
|
||||
#define BIT_STUFF_LEN 5
|
||||
#define MARK_FREQ 1200
|
||||
#define SPACE_FREQ 2200
|
||||
#define MARK_FREQ_300 1600
|
||||
#define SPACE_FREQ_300 1800
|
||||
#define MARK_FREQ_1200 1200
|
||||
#define SPACE_FREQ_1200 2200
|
||||
#define PHASE_BITS 8 // How much to increment phase counter each sample
|
||||
#define PHASE_INC 1 // Nudge by an eigth of a sample each adjustment
|
||||
#define PHASE_MAX (SAMPLESPERBIT * PHASE_BITS) // Resolution of our phase counter = 64
|
||||
#define PHASE_THRESHOLD (PHASE_MAX / 2) // Target transition point of our phase window
|
||||
#define PHASE_MAX_300 (SAMPLESPERBIT_300 * PHASE_BITS) // Resolution of our phase counter = 64
|
||||
#define PHASE_MAX_1200 (SAMPLESPERBIT_1200 * PHASE_BITS) // Resolution of our phase counter = 64
|
||||
#define PHASE_THRESHOLD_300 (PHASE_MAX_300 / 2) // Target transition point of our phase window
|
||||
#define PHASE_THRESHOLD_1200 (PHASE_MAX_1200 / 2) // Target transition point of our phase window
|
||||
#define MARK_INC_300 (uint16_t)(DIV_ROUND(SIN_LEN * (uint32_t)MARK_FREQ_300, CONFIG_AFSK_DAC_SAMPLERATE))
|
||||
#define SPACE_INC_300 (uint16_t)(DIV_ROUND(SIN_LEN * (uint32_t)SPACE_FREQ_300, CONFIG_AFSK_DAC_SAMPLERATE))
|
||||
#define MARK_INC_1200 (uint16_t)(DIV_ROUND(SIN_LEN * (uint32_t)MARK_FREQ_1200, CONFIG_AFSK_DAC_SAMPLERATE))
|
||||
#define SPACE_INC_1200 (uint16_t)(DIV_ROUND(SIN_LEN * (uint32_t)SPACE_FREQ_1200, CONFIG_AFSK_DAC_SAMPLERATE))
|
||||
|
||||
|
||||
typedef struct Hdlc
|
||||
|
@ -85,13 +94,13 @@ typedef struct Afsk
|
|||
uint16_t phaseInc; // Phase increment per sample
|
||||
|
||||
FIFOBuffer txFifo; // FIFO for transmit data
|
||||
uint8_t txBuf[CONFIG_AFSK_TX_BUFLEN]; // Actial data storage for said FIFO
|
||||
uint8_t txBuf[CONFIG_AFSK_TX_BUFLEN]; // Actual data storage for said FIFO
|
||||
|
||||
volatile bool sending; // Set when modem is sending
|
||||
|
||||
// Demodulation values
|
||||
FIFOBuffer delayFifo; // Delayed FIFO for frequency discrimination
|
||||
int8_t delayBuf[SAMPLESPERBIT / 2 + 1]; // Actual data storage for said FIFO
|
||||
int8_t delayBuf[SAMPLESPERBIT_300 / 2 + 1]; // Actual data storage for said FIFO
|
||||
|
||||
FIFOBuffer rxFifo; // FIFO for received data
|
||||
uint8_t rxBuf[CONFIG_AFSK_RX_BUFLEN]; // Actual data storage for said FIFO
|
||||
|
@ -100,16 +109,13 @@ typedef struct Afsk
|
|||
int16_t iirY[2]; // IIR Filter Y cells
|
||||
|
||||
uint8_t sampledBits; // Bits sampled by the demodulator (at ADC speed)
|
||||
int8_t currentPhase; // Current phase of the demodulator
|
||||
int16_t currentPhase; // Current phase of the demodulator
|
||||
uint8_t actualBits; // Actual found bits at correct bitrate
|
||||
|
||||
volatile int status; // Status of the modem, 0 means OK
|
||||
|
||||
uint16_t dataRate; // Data rate for the modem
|
||||
} Afsk;
|
||||
|
||||
#define DIV_ROUND(dividend, divisor) (((dividend) + (divisor) / 2) / (divisor))
|
||||
#define MARK_INC (uint16_t)(DIV_ROUND(SIN_LEN * (uint32_t)MARK_FREQ, CONFIG_AFSK_DAC_SAMPLERATE))
|
||||
#define SPACE_INC (uint16_t)(DIV_ROUND(SIN_LEN * (uint32_t)SPACE_FREQ, CONFIG_AFSK_DAC_SAMPLERATE))
|
||||
|
||||
#define AFSK_DAC_IRQ_START() do { extern bool hw_afsk_dac_isr; hw_afsk_dac_isr = true; } while (0)
|
||||
#define AFSK_DAC_IRQ_STOP() do { extern bool hw_afsk_dac_isr; hw_afsk_dac_isr = false; } while (0)
|
||||
|
@ -131,6 +137,7 @@ typedef struct Afsk
|
|||
void AFSK_init(Afsk *afsk);
|
||||
void AFSK_transmit(char *buffer, size_t size);
|
||||
void AFSK_poll(Afsk *afsk);
|
||||
void AFSK_setDataRate(Afsk *afsk, uint16_t rate);
|
||||
|
||||
void afsk_putchar(char c);
|
||||
int afsk_getchar(void);
|
||||
|
|
|
@ -16,6 +16,7 @@
|
|||
extern int LibAPRS_vref;
|
||||
extern bool LibAPRS_open_squelch;
|
||||
|
||||
|
||||
void ax25_init(AX25Ctx *ctx, ax25_callback_t hook) {
|
||||
memset(ctx, 0, sizeof(*ctx));
|
||||
ctx->hook = hook;
|
||||
|
|
|
@ -68,6 +68,14 @@ void APRS_poll(void) {
|
|||
ax25_poll(&AX25);
|
||||
}
|
||||
|
||||
void APRS_setDataRate300() {
|
||||
AFSK_setDataRate(&modem, 300);
|
||||
}
|
||||
|
||||
void APRS_setDataRate1200() {
|
||||
AFSK_setDataRate(&modem, 1200);
|
||||
}
|
||||
|
||||
void APRS_setCallsign(char *call, int ssid) {
|
||||
memset(CALL, 0, MAX_CALL_LENGTH);
|
||||
int i = 0;
|
||||
|
@ -134,6 +142,10 @@ void APRS_useAlternateSymbolTable(bool use) {
|
|||
}
|
||||
}
|
||||
|
||||
void APRS_setSymbolTable(char table) {
|
||||
symbolTable = table;
|
||||
}
|
||||
|
||||
void APRS_setSymbol(char sym) {
|
||||
symbol = sym;
|
||||
}
|
||||
|
@ -371,6 +383,11 @@ uint8_t APRS_sendLoc_mice(void *_buffer, size_t length) {
|
|||
memcpy(path2.call, PATH2, 6);
|
||||
path2.ssid = PATH2_SSID;
|
||||
|
||||
for (int i=0; i<6; i++) {
|
||||
Serial.print((char)DST[i]);
|
||||
}
|
||||
|
||||
|
||||
path[0] = dst;
|
||||
path[1] = src;
|
||||
path[2] = path1;
|
||||
|
|
|
@ -30,6 +30,7 @@ void APRS_setPreamble(unsigned long pre);
|
|||
void APRS_setTail(unsigned long tail);
|
||||
void APRS_useAlternateSymbolTable(bool use);
|
||||
void APRS_setSymbol(char sym);
|
||||
void APRS_setSymbolTable(char table);
|
||||
|
||||
void APRS_setLat(char *lat);
|
||||
void APRS_setLon(char *lon);
|
||||
|
@ -39,6 +40,8 @@ void APRS_setGain(int s);
|
|||
void APRS_setDirectivity(int s);
|
||||
void APRS_setSpeed(int s);
|
||||
void APRS_setCourse(int c);
|
||||
void APRS_setDataRate300();
|
||||
void APRS_setDataRate1200();
|
||||
|
||||
void APRS_sendPkt(void *_buffer, size_t length);
|
||||
void APRS_sendLoc(void *_buffer, size_t length);
|
||||
|
|
Ładowanie…
Reference in New Issue