diff --git a/LibAPRS/AFSK.cpp b/LibAPRS/AFSK.cpp index 47a7e7c..12e3a9f 100644 --- a/LibAPRS/AFSK.cpp +++ b/LibAPRS/AFSK.cpp @@ -30,7 +30,7 @@ void AFSK_hw_init(void) { AFSK_hw_refDetect(); - TCCR1A = 0; + TCCR1A = 0; TCCR1B = _BV(CS10) | _BV(WGM13) | _BV(WGM12); ICR1 = (((CPU_FREQ+FREQUENCY_CORRECTION)) / 9600) - 1; @@ -45,7 +45,7 @@ void AFSK_hw_init(void) { DIDR0 |= _BV(0); ADCSRB = _BV(ADTS2) | _BV(ADTS1) | - _BV(ADTS0); + _BV(ADTS0); ADCSRA = _BV(ADEN) | _BV(ADSC) | _BV(ADATE)| @@ -62,33 +62,37 @@ void AFSK_init(Afsk *afsk) { memset(afsk, 0, sizeof(*afsk)); AFSK_modem = afsk; // Set phase increment - afsk->phaseInc = MARK_INC; + afsk->dataRate = 1200; + afsk->phaseInc = MARK_INC_1200; // Initialise FIFO buffers fifo_init(&afsk->delayFifo, (uint8_t *)afsk->delayBuf, sizeof(afsk->delayBuf)); fifo_init(&afsk->rxFifo, afsk->rxBuf, sizeof(afsk->rxBuf)); fifo_init(&afsk->txFifo, afsk->txBuf, sizeof(afsk->txBuf)); // Fill delay FIFO with zeroes - for (int i = 0; idelayFifo, 0); } AFSK_hw_init(); +} +void AFSK_setDataRate(Afsk *afsk, uint16_t dataRate) { + afsk->dataRate = dataRate; } static void AFSK_txStart(Afsk *afsk) { if (!afsk->sending) { - afsk->phaseInc = MARK_INC; + afsk->phaseInc = afsk->dataRate == 1200 ? MARK_INC_1200 : MARK_INC_300; afsk->phaseAcc = 0; afsk->bitstuffCount = 0; afsk->sending = true; LED_TX_ON(); - afsk->preambleLength = DIV_ROUND(custom_preamble * BITRATE, 8000); + afsk->preambleLength = DIV_ROUND(custom_preamble * afsk->dataRate, 8000); AFSK_DAC_IRQ_START(); } ATOMIC_BLOCK(ATOMIC_RESTORESTATE) { - afsk->tailLength = DIV_ROUND(custom_tail * BITRATE, 8000); + afsk->tailLength = DIV_ROUND(custom_tail * afsk->dataRate, 8000); } } @@ -154,18 +158,18 @@ uint8_t AFSK_dac_isr(Afsk *afsk) { if (afsk->bitStuff && afsk->bitstuffCount >= BIT_STUFF_LEN) { afsk->bitstuffCount = 0; - afsk->phaseInc = SWITCH_TONE(afsk->phaseInc); + afsk->phaseInc = (afsk->dataRate == 1200) ? SWITCH_TONE_1200(afsk->phaseInc) : SWITCH_TONE_300(afsk->phaseInc); } else { if (afsk->currentOutputByte & afsk->txBit) { afsk->bitstuffCount++; } else { afsk->bitstuffCount = 0; - afsk->phaseInc = SWITCH_TONE(afsk->phaseInc); + afsk->phaseInc = (afsk->dataRate == 1200) ? SWITCH_TONE_1200(afsk->phaseInc) : SWITCH_TONE_300(afsk->phaseInc); } afsk->txBit <<= 1; } - afsk->sampleIndex = SAMPLESPERBIT; + afsk->sampleIndex = (afsk->dataRate == 1200) ? SAMPLESPERBIT_1200 : SAMPLESPERBIT_300; } afsk->phaseAcc += afsk->phaseInc; @@ -184,7 +188,7 @@ static bool hdlcParse(Hdlc *hdlc, bool bit, FIFOBuffer *fifo) { // the left by one bit, to make room for the // next incoming bit hdlc->demodulatedBits <<= 1; - // And then put the newest bit from the + // And then put the newest bit from the // demodulator into the byte. hdlc->demodulatedBits |= bit ? 1 : 0; @@ -205,9 +209,9 @@ static bool hdlcParse(Hdlc *hdlc, bool bit, FIFOBuffer *fifo) { } } else { // If the buffer is full, we have a problem - // and abort by setting the return value to + // and abort by setting the return value to // false and stopping the here. - + ret = false; hdlc->receiving = false; LED_RX_OFF(); @@ -255,7 +259,7 @@ static bool hdlcParse(Hdlc *hdlc, bool bit, FIFOBuffer *fifo) { // a control character. Therefore, if we detect such a // "stuffed bit", we simply ignore it and wait for the // next bit to come in. - // + // // We do the detection by applying an AND bit-mask to the // stream of demodulated bits. This mask is 00111111 (0x3f) // if the result of the operation is 00111110 (0x3e), we @@ -333,7 +337,7 @@ void AFSK_adc_isr(Afsk *afsk, int8_t currentSample) { afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) >> 2; afsk->iirY[0] = afsk->iirY[1]; - + afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + (afsk->iirY[0] >> 1); // Chebyshev filter @@ -347,7 +351,7 @@ void AFSK_adc_isr(Afsk *afsk, int8_t currentSample) { fifo_push(&afsk->delayFifo, currentSample); // We need to check whether there is a signal transition. - // If there is, we can recalibrate the phase of our + // If there is, we can recalibrate the phase of our // sampler to stay in sync with the transmitter. A bit of // explanation is required to understand how this works. // Since we have PHASE_MAX/PHASE_BITS = 8 samples per bit, @@ -363,13 +367,13 @@ void AFSK_adc_isr(Afsk *afsk, int8_t currentSample) { // Past Future // 0000000011111111000000001111111100000000 // |________| - // || + // || // Window // // Every time we detect a signal transition, we adjust // where this window is positioned little. How much we // adjust it is defined by PHASE_INC. If our current phase - // phase counter value is less than half of PHASE_MAX (ie, + // phase counter value is less than half of PHASE_MAX (ie, // the window size) when a signal transition is detected, // add PHASE_INC to our phase counter, effectively moving // the window a little bit backward (to the left in the @@ -380,7 +384,7 @@ void AFSK_adc_isr(Afsk *afsk, int8_t currentSample) { // our timing to the transmitter, even if it's timing is // a little off compared to our own. if (SIGNAL_TRANSITIONED(afsk->sampledBits)) { - if (afsk->currentPhase < PHASE_THRESHOLD) { + if (afsk->currentPhase < PHASE_THRESHOLD_1200) { afsk->currentPhase += PHASE_INC; } else { afsk->currentPhase -= PHASE_INC; @@ -392,10 +396,10 @@ void AFSK_adc_isr(Afsk *afsk, int8_t currentSample) { // Check if we have reached the end of // our sampling window. - if (afsk->currentPhase >= PHASE_MAX) { + if (afsk->currentPhase >= PHASE_MAX_1200) { // If we have, wrap around our phase // counter by modulus - afsk->currentPhase %= PHASE_MAX; + afsk->currentPhase %= PHASE_MAX_1200; // Bitshift to make room for the next // bit in our stream of demodulated bits @@ -462,7 +466,7 @@ ISR(ADC_vect) { TIFR1 = _BV(ICF1); AFSK_adc_isr(AFSK_modem, ((int16_t)((ADC) >> 2) - 128)); if (hw_afsk_dac_isr) { - DAC_PORT = (AFSK_dac_isr(AFSK_modem) & 0xF0) | _BV(3); + DAC_PORT = (AFSK_dac_isr(AFSK_modem) & 0xF0) | _BV(3); } else { DAC_PORT = 128; } @@ -472,4 +476,4 @@ ISR(ADC_vect) { poll_timer = 0; APRS_poll(); } -} \ No newline at end of file +} diff --git a/LibAPRS/AFSK.h b/LibAPRS/AFSK.h index fe2ebad..5a46dbe 100644 --- a/LibAPRS/AFSK.h +++ b/LibAPRS/AFSK.h @@ -29,8 +29,9 @@ inline static uint8_t sinSample(uint16_t i) { return (i >= (SIN_LEN/2)) ? (255 - sine) : sine; } - -#define SWITCH_TONE(inc) (((inc) == MARK_INC) ? SPACE_INC : MARK_INC) +#define DIV_ROUND(dividend, divisor) (((dividend) + (divisor) / 2) / (divisor)) +#define SWITCH_TONE_300(inc) (((inc) == MARK_INC_300) ? SPACE_INC_300 : MARK_INC_300) +#define SWITCH_TONE_1200(inc) (((inc) == MARK_INC_1200) ? SPACE_INC_1200 : MARK_INC_1200) #define BITS_DIFFER(bits1, bits2) (((bits1)^(bits2)) & 0x01) #define DUAL_XOR(bits1, bits2) ((((bits1)^(bits2)) & 0x03) == 0x03) #define SIGNAL_TRANSITIONED(bits) DUAL_XOR((bits), (bits) >> 2) @@ -44,15 +45,23 @@ inline static uint8_t sinSample(uint16_t i) { #define CONFIG_AFSK_PREAMBLE_LEN 150UL #define CONFIG_AFSK_TRAILER_LEN 50UL #define SAMPLERATE 9600 -#define BITRATE 1200 -#define SAMPLESPERBIT (SAMPLERATE / BITRATE) +#define SAMPLESPERBIT_1200 (SAMPLERATE / 1200) +#define SAMPLESPERBIT_300 (SAMPLERATE / 300) #define BIT_STUFF_LEN 5 -#define MARK_FREQ 1200 -#define SPACE_FREQ 2200 +#define MARK_FREQ_300 1600 +#define SPACE_FREQ_300 1800 +#define MARK_FREQ_1200 1200 +#define SPACE_FREQ_1200 2200 #define PHASE_BITS 8 // How much to increment phase counter each sample #define PHASE_INC 1 // Nudge by an eigth of a sample each adjustment -#define PHASE_MAX (SAMPLESPERBIT * PHASE_BITS) // Resolution of our phase counter = 64 -#define PHASE_THRESHOLD (PHASE_MAX / 2) // Target transition point of our phase window +#define PHASE_MAX_300 (SAMPLESPERBIT_300 * PHASE_BITS) // Resolution of our phase counter = 64 +#define PHASE_MAX_1200 (SAMPLESPERBIT_1200 * PHASE_BITS) // Resolution of our phase counter = 64 +#define PHASE_THRESHOLD_300 (PHASE_MAX_300 / 2) // Target transition point of our phase window +#define PHASE_THRESHOLD_1200 (PHASE_MAX_1200 / 2) // Target transition point of our phase window +#define MARK_INC_300 (uint16_t)(DIV_ROUND(SIN_LEN * (uint32_t)MARK_FREQ_300, CONFIG_AFSK_DAC_SAMPLERATE)) +#define SPACE_INC_300 (uint16_t)(DIV_ROUND(SIN_LEN * (uint32_t)SPACE_FREQ_300, CONFIG_AFSK_DAC_SAMPLERATE)) +#define MARK_INC_1200 (uint16_t)(DIV_ROUND(SIN_LEN * (uint32_t)MARK_FREQ_1200, CONFIG_AFSK_DAC_SAMPLERATE)) +#define SPACE_INC_1200 (uint16_t)(DIV_ROUND(SIN_LEN * (uint32_t)SPACE_FREQ_1200, CONFIG_AFSK_DAC_SAMPLERATE)) typedef struct Hdlc @@ -85,13 +94,13 @@ typedef struct Afsk uint16_t phaseInc; // Phase increment per sample FIFOBuffer txFifo; // FIFO for transmit data - uint8_t txBuf[CONFIG_AFSK_TX_BUFLEN]; // Actial data storage for said FIFO + uint8_t txBuf[CONFIG_AFSK_TX_BUFLEN]; // Actual data storage for said FIFO volatile bool sending; // Set when modem is sending // Demodulation values FIFOBuffer delayFifo; // Delayed FIFO for frequency discrimination - int8_t delayBuf[SAMPLESPERBIT / 2 + 1]; // Actual data storage for said FIFO + int8_t delayBuf[SAMPLESPERBIT_300 / 2 + 1]; // Actual data storage for said FIFO FIFOBuffer rxFifo; // FIFO for received data uint8_t rxBuf[CONFIG_AFSK_RX_BUFLEN]; // Actual data storage for said FIFO @@ -100,16 +109,13 @@ typedef struct Afsk int16_t iirY[2]; // IIR Filter Y cells uint8_t sampledBits; // Bits sampled by the demodulator (at ADC speed) - int8_t currentPhase; // Current phase of the demodulator + int16_t currentPhase; // Current phase of the demodulator uint8_t actualBits; // Actual found bits at correct bitrate volatile int status; // Status of the modem, 0 means OK - + uint16_t dataRate; // Data rate for the modem } Afsk; -#define DIV_ROUND(dividend, divisor) (((dividend) + (divisor) / 2) / (divisor)) -#define MARK_INC (uint16_t)(DIV_ROUND(SIN_LEN * (uint32_t)MARK_FREQ, CONFIG_AFSK_DAC_SAMPLERATE)) -#define SPACE_INC (uint16_t)(DIV_ROUND(SIN_LEN * (uint32_t)SPACE_FREQ, CONFIG_AFSK_DAC_SAMPLERATE)) #define AFSK_DAC_IRQ_START() do { extern bool hw_afsk_dac_isr; hw_afsk_dac_isr = true; } while (0) #define AFSK_DAC_IRQ_STOP() do { extern bool hw_afsk_dac_isr; hw_afsk_dac_isr = false; } while (0) @@ -131,6 +137,7 @@ typedef struct Afsk void AFSK_init(Afsk *afsk); void AFSK_transmit(char *buffer, size_t size); void AFSK_poll(Afsk *afsk); +void AFSK_setDataRate(Afsk *afsk, uint16_t rate); void afsk_putchar(char c); int afsk_getchar(void); diff --git a/LibAPRS/AX25.cpp b/LibAPRS/AX25.cpp index 078b931..78f51e0 100644 --- a/LibAPRS/AX25.cpp +++ b/LibAPRS/AX25.cpp @@ -16,6 +16,7 @@ extern int LibAPRS_vref; extern bool LibAPRS_open_squelch; + void ax25_init(AX25Ctx *ctx, ax25_callback_t hook) { memset(ctx, 0, sizeof(*ctx)); ctx->hook = hook; diff --git a/LibAPRS/LibAPRS.cpp b/LibAPRS/LibAPRS.cpp index 0f3b0fc..73a835a 100644 --- a/LibAPRS/LibAPRS.cpp +++ b/LibAPRS/LibAPRS.cpp @@ -68,6 +68,14 @@ void APRS_poll(void) { ax25_poll(&AX25); } +void APRS_setDataRate300() { + AFSK_setDataRate(&modem, 300); +} + +void APRS_setDataRate1200() { + AFSK_setDataRate(&modem, 1200); +} + void APRS_setCallsign(char *call, int ssid) { memset(CALL, 0, MAX_CALL_LENGTH); int i = 0; @@ -134,6 +142,10 @@ void APRS_useAlternateSymbolTable(bool use) { } } +void APRS_setSymbolTable(char table) { + symbolTable = table; +} + void APRS_setSymbol(char sym) { symbol = sym; } @@ -371,6 +383,11 @@ uint8_t APRS_sendLoc_mice(void *_buffer, size_t length) { memcpy(path2.call, PATH2, 6); path2.ssid = PATH2_SSID; + for (int i=0; i<6; i++) { + Serial.print((char)DST[i]); + } + + path[0] = dst; path[1] = src; path[2] = path1; diff --git a/LibAPRS/LibAPRS.h b/LibAPRS/LibAPRS.h index d003940..aee87a4 100644 --- a/LibAPRS/LibAPRS.h +++ b/LibAPRS/LibAPRS.h @@ -30,6 +30,7 @@ void APRS_setPreamble(unsigned long pre); void APRS_setTail(unsigned long tail); void APRS_useAlternateSymbolTable(bool use); void APRS_setSymbol(char sym); +void APRS_setSymbolTable(char table); void APRS_setLat(char *lat); void APRS_setLon(char *lon); @@ -39,6 +40,8 @@ void APRS_setGain(int s); void APRS_setDirectivity(int s); void APRS_setSpeed(int s); void APRS_setCourse(int c); +void APRS_setDataRate300(); +void APRS_setDataRate1200(); void APRS_sendPkt(void *_buffer, size_t length); void APRS_sendLoc(void *_buffer, size_t length);