tahpee 2018-06-03 07:19:39 +00:00 zatwierdzone przez GitHub
commit 1c9a9e9507
Nie znaleziono w bazie danych klucza dla tego podpisu
ID klucza GPG: 4AEE18F83AFDEB23
5 zmienionych plików z 261 dodań i 48 usunięć

Wyświetl plik

@ -30,7 +30,7 @@ void AFSK_hw_init(void) {
AFSK_hw_refDetect();
TCCR1A = 0;
TCCR1A = 0;
TCCR1B = _BV(CS10) | _BV(WGM13) | _BV(WGM12);
ICR1 = (((CPU_FREQ+FREQUENCY_CORRECTION)) / 9600) - 1;
@ -45,7 +45,7 @@ void AFSK_hw_init(void) {
DIDR0 |= _BV(0);
ADCSRB = _BV(ADTS2) |
_BV(ADTS1) |
_BV(ADTS0);
_BV(ADTS0);
ADCSRA = _BV(ADEN) |
_BV(ADSC) |
_BV(ADATE)|
@ -62,33 +62,37 @@ void AFSK_init(Afsk *afsk) {
memset(afsk, 0, sizeof(*afsk));
AFSK_modem = afsk;
// Set phase increment
afsk->phaseInc = MARK_INC;
afsk->dataRate = 1200;
afsk->phaseInc = MARK_INC_1200;
// Initialise FIFO buffers
fifo_init(&afsk->delayFifo, (uint8_t *)afsk->delayBuf, sizeof(afsk->delayBuf));
fifo_init(&afsk->rxFifo, afsk->rxBuf, sizeof(afsk->rxBuf));
fifo_init(&afsk->txFifo, afsk->txBuf, sizeof(afsk->txBuf));
// Fill delay FIFO with zeroes
for (int i = 0; i<SAMPLESPERBIT / 2; i++) {
for (int i = 0; i<SAMPLESPERBIT_300 / 2; i++) {
fifo_push(&afsk->delayFifo, 0);
}
AFSK_hw_init();
}
void AFSK_setDataRate(Afsk *afsk, uint16_t dataRate) {
afsk->dataRate = dataRate;
}
static void AFSK_txStart(Afsk *afsk) {
if (!afsk->sending) {
afsk->phaseInc = MARK_INC;
afsk->phaseInc = afsk->dataRate == 1200 ? MARK_INC_1200 : MARK_INC_300;
afsk->phaseAcc = 0;
afsk->bitstuffCount = 0;
afsk->sending = true;
LED_TX_ON();
afsk->preambleLength = DIV_ROUND(custom_preamble * BITRATE, 8000);
afsk->preambleLength = DIV_ROUND(custom_preamble * afsk->dataRate, 8000);
AFSK_DAC_IRQ_START();
}
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
afsk->tailLength = DIV_ROUND(custom_tail * BITRATE, 8000);
afsk->tailLength = DIV_ROUND(custom_tail * afsk->dataRate, 8000);
}
}
@ -154,18 +158,18 @@ uint8_t AFSK_dac_isr(Afsk *afsk) {
if (afsk->bitStuff && afsk->bitstuffCount >= BIT_STUFF_LEN) {
afsk->bitstuffCount = 0;
afsk->phaseInc = SWITCH_TONE(afsk->phaseInc);
afsk->phaseInc = (afsk->dataRate == 1200) ? SWITCH_TONE_1200(afsk->phaseInc) : SWITCH_TONE_300(afsk->phaseInc);
} else {
if (afsk->currentOutputByte & afsk->txBit) {
afsk->bitstuffCount++;
} else {
afsk->bitstuffCount = 0;
afsk->phaseInc = SWITCH_TONE(afsk->phaseInc);
afsk->phaseInc = (afsk->dataRate == 1200) ? SWITCH_TONE_1200(afsk->phaseInc) : SWITCH_TONE_300(afsk->phaseInc);
}
afsk->txBit <<= 1;
}
afsk->sampleIndex = SAMPLESPERBIT;
afsk->sampleIndex = (afsk->dataRate == 1200) ? SAMPLESPERBIT_1200 : SAMPLESPERBIT_300;
}
afsk->phaseAcc += afsk->phaseInc;
@ -184,7 +188,7 @@ static bool hdlcParse(Hdlc *hdlc, bool bit, FIFOBuffer *fifo) {
// the left by one bit, to make room for the
// next incoming bit
hdlc->demodulatedBits <<= 1;
// And then put the newest bit from the
// And then put the newest bit from the
// demodulator into the byte.
hdlc->demodulatedBits |= bit ? 1 : 0;
@ -205,9 +209,9 @@ static bool hdlcParse(Hdlc *hdlc, bool bit, FIFOBuffer *fifo) {
}
} else {
// If the buffer is full, we have a problem
// and abort by setting the return value to
// and abort by setting the return value to
// false and stopping the here.
ret = false;
hdlc->receiving = false;
LED_RX_OFF();
@ -255,7 +259,7 @@ static bool hdlcParse(Hdlc *hdlc, bool bit, FIFOBuffer *fifo) {
// a control character. Therefore, if we detect such a
// "stuffed bit", we simply ignore it and wait for the
// next bit to come in.
//
//
// We do the detection by applying an AND bit-mask to the
// stream of demodulated bits. This mask is 00111111 (0x3f)
// if the result of the operation is 00111110 (0x3e), we
@ -333,7 +337,7 @@ void AFSK_adc_isr(Afsk *afsk, int8_t currentSample) {
afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) >> 2;
afsk->iirY[0] = afsk->iirY[1];
afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + (afsk->iirY[0] >> 1); // Chebyshev filter
@ -347,7 +351,7 @@ void AFSK_adc_isr(Afsk *afsk, int8_t currentSample) {
fifo_push(&afsk->delayFifo, currentSample);
// We need to check whether there is a signal transition.
// If there is, we can recalibrate the phase of our
// If there is, we can recalibrate the phase of our
// sampler to stay in sync with the transmitter. A bit of
// explanation is required to understand how this works.
// Since we have PHASE_MAX/PHASE_BITS = 8 samples per bit,
@ -363,13 +367,13 @@ void AFSK_adc_isr(Afsk *afsk, int8_t currentSample) {
// Past Future
// 0000000011111111000000001111111100000000
// |________|
// ||
// ||
// Window
//
// Every time we detect a signal transition, we adjust
// where this window is positioned little. How much we
// adjust it is defined by PHASE_INC. If our current phase
// phase counter value is less than half of PHASE_MAX (ie,
// phase counter value is less than half of PHASE_MAX (ie,
// the window size) when a signal transition is detected,
// add PHASE_INC to our phase counter, effectively moving
// the window a little bit backward (to the left in the
@ -380,7 +384,7 @@ void AFSK_adc_isr(Afsk *afsk, int8_t currentSample) {
// our timing to the transmitter, even if it's timing is
// a little off compared to our own.
if (SIGNAL_TRANSITIONED(afsk->sampledBits)) {
if (afsk->currentPhase < PHASE_THRESHOLD) {
if (afsk->currentPhase < PHASE_THRESHOLD_1200) {
afsk->currentPhase += PHASE_INC;
} else {
afsk->currentPhase -= PHASE_INC;
@ -392,10 +396,10 @@ void AFSK_adc_isr(Afsk *afsk, int8_t currentSample) {
// Check if we have reached the end of
// our sampling window.
if (afsk->currentPhase >= PHASE_MAX) {
if (afsk->currentPhase >= PHASE_MAX_1200) {
// If we have, wrap around our phase
// counter by modulus
afsk->currentPhase %= PHASE_MAX;
afsk->currentPhase %= PHASE_MAX_1200;
// Bitshift to make room for the next
// bit in our stream of demodulated bits
@ -462,7 +466,7 @@ ISR(ADC_vect) {
TIFR1 = _BV(ICF1);
AFSK_adc_isr(AFSK_modem, ((int16_t)((ADC) >> 2) - 128));
if (hw_afsk_dac_isr) {
DAC_PORT = (AFSK_dac_isr(AFSK_modem) & 0xF0) | _BV(3);
DAC_PORT = (AFSK_dac_isr(AFSK_modem) & 0xF0) | _BV(3);
} else {
DAC_PORT = 128;
}
@ -472,4 +476,4 @@ ISR(ADC_vect) {
poll_timer = 0;
APRS_poll();
}
}
}

Wyświetl plik

@ -29,8 +29,9 @@ inline static uint8_t sinSample(uint16_t i) {
return (i >= (SIN_LEN/2)) ? (255 - sine) : sine;
}
#define SWITCH_TONE(inc) (((inc) == MARK_INC) ? SPACE_INC : MARK_INC)
#define DIV_ROUND(dividend, divisor) (((dividend) + (divisor) / 2) / (divisor))
#define SWITCH_TONE_300(inc) (((inc) == MARK_INC_300) ? SPACE_INC_300 : MARK_INC_300)
#define SWITCH_TONE_1200(inc) (((inc) == MARK_INC_1200) ? SPACE_INC_1200 : MARK_INC_1200)
#define BITS_DIFFER(bits1, bits2) (((bits1)^(bits2)) & 0x01)
#define DUAL_XOR(bits1, bits2) ((((bits1)^(bits2)) & 0x03) == 0x03)
#define SIGNAL_TRANSITIONED(bits) DUAL_XOR((bits), (bits) >> 2)
@ -44,15 +45,23 @@ inline static uint8_t sinSample(uint16_t i) {
#define CONFIG_AFSK_PREAMBLE_LEN 150UL
#define CONFIG_AFSK_TRAILER_LEN 50UL
#define SAMPLERATE 9600
#define BITRATE 1200
#define SAMPLESPERBIT (SAMPLERATE / BITRATE)
#define SAMPLESPERBIT_1200 (SAMPLERATE / 1200)
#define SAMPLESPERBIT_300 (SAMPLERATE / 300)
#define BIT_STUFF_LEN 5
#define MARK_FREQ 1200
#define SPACE_FREQ 2200
#define MARK_FREQ_300 1600
#define SPACE_FREQ_300 1800
#define MARK_FREQ_1200 1200
#define SPACE_FREQ_1200 2200
#define PHASE_BITS 8 // How much to increment phase counter each sample
#define PHASE_INC 1 // Nudge by an eigth of a sample each adjustment
#define PHASE_MAX (SAMPLESPERBIT * PHASE_BITS) // Resolution of our phase counter = 64
#define PHASE_THRESHOLD (PHASE_MAX / 2) // Target transition point of our phase window
#define PHASE_MAX_300 (SAMPLESPERBIT_300 * PHASE_BITS) // Resolution of our phase counter = 64
#define PHASE_MAX_1200 (SAMPLESPERBIT_1200 * PHASE_BITS) // Resolution of our phase counter = 64
#define PHASE_THRESHOLD_300 (PHASE_MAX_300 / 2) // Target transition point of our phase window
#define PHASE_THRESHOLD_1200 (PHASE_MAX_1200 / 2) // Target transition point of our phase window
#define MARK_INC_300 (uint16_t)(DIV_ROUND(SIN_LEN * (uint32_t)MARK_FREQ_300, CONFIG_AFSK_DAC_SAMPLERATE))
#define SPACE_INC_300 (uint16_t)(DIV_ROUND(SIN_LEN * (uint32_t)SPACE_FREQ_300, CONFIG_AFSK_DAC_SAMPLERATE))
#define MARK_INC_1200 (uint16_t)(DIV_ROUND(SIN_LEN * (uint32_t)MARK_FREQ_1200, CONFIG_AFSK_DAC_SAMPLERATE))
#define SPACE_INC_1200 (uint16_t)(DIV_ROUND(SIN_LEN * (uint32_t)SPACE_FREQ_1200, CONFIG_AFSK_DAC_SAMPLERATE))
typedef struct Hdlc
@ -85,13 +94,13 @@ typedef struct Afsk
uint16_t phaseInc; // Phase increment per sample
FIFOBuffer txFifo; // FIFO for transmit data
uint8_t txBuf[CONFIG_AFSK_TX_BUFLEN]; // Actial data storage for said FIFO
uint8_t txBuf[CONFIG_AFSK_TX_BUFLEN]; // Actual data storage for said FIFO
volatile bool sending; // Set when modem is sending
// Demodulation values
FIFOBuffer delayFifo; // Delayed FIFO for frequency discrimination
int8_t delayBuf[SAMPLESPERBIT / 2 + 1]; // Actual data storage for said FIFO
int8_t delayBuf[SAMPLESPERBIT_300 / 2 + 1]; // Actual data storage for said FIFO
FIFOBuffer rxFifo; // FIFO for received data
uint8_t rxBuf[CONFIG_AFSK_RX_BUFLEN]; // Actual data storage for said FIFO
@ -100,16 +109,13 @@ typedef struct Afsk
int16_t iirY[2]; // IIR Filter Y cells
uint8_t sampledBits; // Bits sampled by the demodulator (at ADC speed)
int8_t currentPhase; // Current phase of the demodulator
int16_t currentPhase; // Current phase of the demodulator
uint8_t actualBits; // Actual found bits at correct bitrate
volatile int status; // Status of the modem, 0 means OK
uint16_t dataRate; // Data rate for the modem
} Afsk;
#define DIV_ROUND(dividend, divisor) (((dividend) + (divisor) / 2) / (divisor))
#define MARK_INC (uint16_t)(DIV_ROUND(SIN_LEN * (uint32_t)MARK_FREQ, CONFIG_AFSK_DAC_SAMPLERATE))
#define SPACE_INC (uint16_t)(DIV_ROUND(SIN_LEN * (uint32_t)SPACE_FREQ, CONFIG_AFSK_DAC_SAMPLERATE))
#define AFSK_DAC_IRQ_START() do { extern bool hw_afsk_dac_isr; hw_afsk_dac_isr = true; } while (0)
#define AFSK_DAC_IRQ_STOP() do { extern bool hw_afsk_dac_isr; hw_afsk_dac_isr = false; } while (0)
@ -131,6 +137,7 @@ typedef struct Afsk
void AFSK_init(Afsk *afsk);
void AFSK_transmit(char *buffer, size_t size);
void AFSK_poll(Afsk *afsk);
void AFSK_setDataRate(Afsk *afsk, uint16_t rate);
void afsk_putchar(char c);
int afsk_getchar(void);

Wyświetl plik

@ -16,6 +16,7 @@
extern int LibAPRS_vref;
extern bool LibAPRS_open_squelch;
void ax25_init(AX25Ctx *ctx, ax25_callback_t hook) {
memset(ctx, 0, sizeof(*ctx));
ctx->hook = hook;

Wyświetl plik

@ -18,14 +18,17 @@ AX25Call dst;
AX25Call path1;
AX25Call path2;
char CALL[7] = "NOCALL";
#define MAX_CALL_LENGTH 7
char CALL[MAX_CALL_LENGTH] = "NOCALL";
int CALL_SSID = 0;
char DST[7] = "APZMDM";
char DST[MAX_CALL_LENGTH] = "APZMDM";
int DST_SSID = 0;
char PATH1[7] = "WIDE1";
char PATH1[MAX_CALL_LENGTH] = "WIDE1";
int PATH1_SSID = 1;
char PATH2[7] = "WIDE2";
char PATH2[MAX_CALL_LENGTH] = "WIDE2";
int PATH2_SSID = 2;
uint8_t MICE_MSG;
uint8_t MICE_SSID;
AX25Call path[4];
@ -39,6 +42,8 @@ uint8_t power = 10;
uint8_t height = 10;
uint8_t gain = 10;
uint8_t directivity = 10;
uint16_t speed;
uint16_t course;
/////////////////////////
// Message packet assembly fields
@ -63,8 +68,16 @@ void APRS_poll(void) {
ax25_poll(&AX25);
}
void APRS_setDataRate300() {
AFSK_setDataRate(&modem, 300);
}
void APRS_setDataRate1200() {
AFSK_setDataRate(&modem, 1200);
}
void APRS_setCallsign(char *call, int ssid) {
memset(CALL, 0, 7);
memset(CALL, 0, MAX_CALL_LENGTH);
int i = 0;
while (i < 6 && call[i] != 0) {
CALL[i] = call[i];
@ -74,7 +87,7 @@ void APRS_setCallsign(char *call, int ssid) {
}
void APRS_setDestination(char *call, int ssid) {
memset(DST, 0, 7);
memset(DST, 0, MAX_CALL_LENGTH);
int i = 0;
while (i < 6 && call[i] != 0) {
DST[i] = call[i];
@ -84,7 +97,7 @@ void APRS_setDestination(char *call, int ssid) {
}
void APRS_setPath1(char *call, int ssid) {
memset(PATH1, 0, 7);
memset(PATH1, 0, MAX_CALL_LENGTH);
int i = 0;
while (i < 6 && call[i] != 0) {
PATH1[i] = call[i];
@ -94,7 +107,7 @@ void APRS_setPath1(char *call, int ssid) {
}
void APRS_setPath2(char *call, int ssid) {
memset(PATH2, 0, 7);
memset(PATH2, 0, MAX_CALL_LENGTH);
int i = 0;
while (i < 6 && call[i] != 0) {
PATH2[i] = call[i];
@ -104,7 +117,7 @@ void APRS_setPath2(char *call, int ssid) {
}
void APRS_setMessageDestination(char *call, int ssid) {
memset(message_recip, 0, 7);
memset(message_recip, 0, 6);
int i = 0;
while (i < 6 && call[i] != 0) {
message_recip[i] = call[i];
@ -129,6 +142,10 @@ void APRS_useAlternateSymbolTable(bool use) {
}
}
void APRS_setSymbolTable(char table) {
symbolTable = table;
}
void APRS_setSymbol(char sym) {
symbol = sym;
}
@ -175,6 +192,24 @@ void APRS_setDirectivity(int s) {
}
}
// Set the speed in knots. Valid speeds are 0-799 knots
void APRS_setSpeed(int s) {
if (s >= 0 && s < 800) {
speed = s;
} else {
speed = 0;
}
}
// Set the course, valid courses are 0-360 where 0 is unknown and 360 is due north
void APRS_setCourse(int c) {
if (c >= 0 && c <= 360) {
course = c;
} else {
course = 0;
}
}
void APRS_printSettings() {
Serial.println(F("LibAPRS Settings:"));
Serial.print(F("Callsign: ")); Serial.print(CALL); Serial.print(F("-")); Serial.println(CALL_SSID);
@ -218,6 +253,154 @@ void APRS_sendPkt(void *_buffer, size_t length) {
ax25_sendVia(&AX25, path, countof(path), buffer, length);
}
// 3 bits of MIC-E message. Bit A is the most significant bit.
// If custom is set then we use the custom message bits when encoding
// Standard messages Custom Messages
// 0x07: M0: Off Duty C0: Custom-0
// 0x06: M1: En route C1: Custom-1
// 0x05: M2: In service C2: Custom-2
// 0x04: M3: Returning C3: Custom-3
// 0x03: M4: Committed C4: Custom-4
// 0x02: M5: Special C5: Custom-5
// 0x01: M6: Priority C6: Custom-6
// 0x00: Emergency Emergency
void APRS_set_mice_msg(uint8_t msg, bool custom) {
MICE_MSG = msg & 0x07;
// If custom message bits, store the custom flag in bit 7 of the MICE_MSG
if (custom) {
MICE_MSG |= 0x80;
}
}
void APRS_set_mice_ssid(uint8_t ssid) {
MICE_SSID = ssid & 0x0F;
}
uint8_t APRS_sendLoc_mice(void *_buffer, size_t length) {
uint8_t path_len;
uint8_t payloadLength = 9 + length;
uint8_t *packet = (uint8_t*)malloc(payloadLength);
// Sanity check the latitude and longtitude
if (latitude[7] != 'N' && latitude[7] != 'S') {
return 1;
}
if (longtitude[8] != 'E' && longtitude[8] != 'W') {
return 1;
}
// Build the Destination callsign with the latitude information
DST[0] = (latitude[0] & 0x0F) | 0x30;
if (MICE_MSG & 0x04) {
if (MICE_MSG & 0x80) {
DST[0] += 0x17; // Custom message bit
} else {
DST[0] += 0x20; // Standard message bit
}
}
DST[1] = (latitude[1] & 0x0F) | 0x30;
if (MICE_MSG & 0x02) {
if (MICE_MSG & 0x80) {
DST[1] += 0x17; // Custom message bit
} else {
DST[1] += 0x20; // Standard message bit
}
}
DST[2] = (latitude[2] & 0x0F) | 0x30;
if (MICE_MSG & 0x01) {
if (MICE_MSG & 0x80) {
DST[2] += 0x17; // Custom message bit
} else {
DST[2] += 0x20; // Standard message bit
}
}
DST[3] = (latitude[3] & 0x0F) | 0x30;
if (latitude[7] == 'N') { // North/South Latitude Indicator
DST[3] += 0x20;
}
DST[4] = (latitude[5] & 0x0F) | 0x30; // Use latitude[5] becuase latitude[4] is a .
// if (longtitude[0] == '1') { // If the longtitude is > 100, set this bit
// DST[4] += 0x20;
// }
DST[5] = (latitude[6] & 0x0F) | 0x30;
if (longtitude[8] == 'W') { // If the longtitude is > 100, set this bit
DST[4] += 0x20;
}
packet[0] = 0x60; // The ` character indicating valid GPS data
// Degrees. If longtitude > 100 the +100 longtitude bit is set in the Destination field, but only in
// certain circumstances, see http://www.aprs.org/doc/APRS101.PDF page 47
uint8_t lon_deg = ((longtitude[0] & 0x0F) * 100 + (longtitude[1] & 0x0F) * 10 + (longtitude[2] & 0x0F));
if (lon_deg < 10) {
packet[1] = 118 + lon_deg;
DST[4] += 0x20;
} else if (lon_deg < 100) {
packet[1] = 38 + lon_deg - 10;
} else if (lon_deg < 110) {
packet[1] = 108 + (lon_deg - 100);
DST[4] += 0x20;
} else {
packet[1] = 38 + (lon_deg - 110);
DST[4] += 0x20;
}
uint8_t lon_min = ((longtitude[3] & 0x0F) * 10) + (longtitude[4] & 0x0F);
if (lon_min < 10) {
packet[2] = 88 + lon_min;
} else {
packet[2] = 38 + lon_min - 10;
}
packet[3] = ((longtitude[6] & 0x0F) * 10) + (longtitude[7] & 0x0F) + 28;
// bytes 4, 5 and 6 encode the speed and course
// Page 50 of the APRS spec
packet[4] = (speed / 10) + 28; // 100's an 10's of knots
packet[5] = (speed % 10) * 10 + 32; // 1's of knots
if (course > 299) {
packet[5] += 3;
} else if (course > 199) {
packet[5] += 2;
} else if (course > 99) {
packet[5] += 1;
}
packet[6] = (course % 100) + 28;
packet[7] = (uint8_t)symbol;
packet[8] = (uint8_t)symbolTable;
if (MICE_SSID != 0) {
path_len = 0;
} else {
path_len = 4;
}
memcpy(dst.call, DST, 6);
dst.ssid = DST_SSID;
memcpy(src.call, CALL, 6);
src.ssid = CALL_SSID;
memcpy(path1.call, PATH1, 6);
path1.ssid = PATH1_SSID;
memcpy(path2.call, PATH2, 6);
path2.ssid = PATH2_SSID;
for (int i=0; i<6; i++) {
Serial.print((char)DST[i]);
}
path[0] = dst;
path[1] = src;
path[2] = path1;
path[3] = path2;
if (length > 0) {
uint8_t *buffer = (uint8_t *)_buffer;
memcpy(&packet[9], buffer, length);
}
ax25_sendVia(&AX25, path, path_len, packet, payloadLength);
free(packet);
return 0;
}
// Dynamic RAM usage of this function is 30 bytes
void APRS_sendLoc(void *_buffer, size_t length) {
size_t payloadLength = 20+length;
@ -303,7 +486,7 @@ void APRS_sendMsg(void *_buffer, size_t length) {
packet[12+length] = h+48;
packet[13+length] = d+48;
packet[14+length] = n+48;
APRS_sendPkt(packet, payloadLength);
free(packet);
}

Wyświetl plik

@ -8,6 +8,15 @@
#include "AFSK.h"
#include "AX25.h"
#define MICE_STD_MSG_OFF_DUTY 0x07
#define MICE_STD_MSG_EN_ROUTE 0x06
#define MICE_STD_MSG_IN_SERVICE 0x05
#define MICE_STD_MSG_RETURNING 0x04
#define MICE_STD_MSG_COMMITTED 0x03
#define MICE_STD_MSG_SPECIAL 0x02
#define MICE_STD_MSG_PRIORITY 0x01
#define MICE_STD_MSG_EMERGENCY 0x00
void APRS_init(int reference, bool open_squelch);
void APRS_poll(void);
@ -21,6 +30,7 @@ void APRS_setPreamble(unsigned long pre);
void APRS_setTail(unsigned long tail);
void APRS_useAlternateSymbolTable(bool use);
void APRS_setSymbol(char sym);
void APRS_setSymbolTable(char table);
void APRS_setLat(char *lat);
void APRS_setLon(char *lon);
@ -28,11 +38,19 @@ void APRS_setPower(int s);
void APRS_setHeight(int s);
void APRS_setGain(int s);
void APRS_setDirectivity(int s);
void APRS_setSpeed(int s);
void APRS_setCourse(int c);
void APRS_setDataRate300();
void APRS_setDataRate1200();
void APRS_sendPkt(void *_buffer, size_t length);
void APRS_sendLoc(void *_buffer, size_t length);
void APRS_sendMsg(void *_buffer, size_t length);
void APRS_msgRetry();
uint8_t APRS_sendLoc_mice(void *_buffer, size_t length);
void APRS_set_mice_ssid(uint8_t ssid);
void APRS_set_mice_msg(uint8_t msg, bool custom);
void APRS_printSettings();