Hamlib/rigs/kenwood/ts2000.c

1914 wiersze
54 KiB
C

/*
* Hamlib Kenwood backend - TS2000 description
* Copyright (c) 2000-2011 by Stephane Fillod
* Copyright (c) 2023 by Mikael Nousiainen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <hamlib/rig.h>
#include "kenwood.h"
#include "token.h"
#include "misc.h"
#include "iofunc.h"
#include "cal.h"
#define TS2000_ALL_MODES (RIG_MODE_AM|RIG_MODE_CW|RIG_MODE_CWR|RIG_MODE_SSB|RIG_MODE_FM|RIG_MODE_RTTY|RIG_MODE_RTTYR)
#define TS2000_OTHER_TX_MODES (RIG_MODE_CW|RIG_MODE_SSB|RIG_MODE_FM|RIG_MODE_RTTY)
#define TS2000_AM_TX_MODES RIG_MODE_AM
#define TS2000_LEVEL_GET (RIG_LEVEL_RFPOWER|RIG_LEVEL_AF|RIG_LEVEL_RF|RIG_LEVEL_SQL|RIG_LEVEL_AGC|RIG_LEVEL_MICGAIN|RIG_LEVEL_STRENGTH|RIG_LEVEL_KEYSPD|RIG_LEVEL_CWPITCH| \
RIG_LEVEL_MONITOR_GAIN|RIG_LEVEL_NB|RIG_LEVEL_NR|RIG_LEVEL_PREAMP|RIG_LEVEL_COMP|RIG_LEVEL_ATT|RIG_LEVEL_VOXDELAY|RIG_LEVEL_VOXGAIN|RIG_LEVEL_BKIN_DLYMS| \
RIG_LEVEL_METER|RIG_LEVEL_SWR|RIG_LEVEL_COMP_METER|RIG_LEVEL_ALC|RIG_LEVEL_RFPOWER_METER|RIG_LEVEL_SLOPE_HIGH|RIG_LEVEL_SLOPE_LOW)
#define TS2000_LEVEL_SET (RIG_LEVEL_RFPOWER|RIG_LEVEL_AF|RIG_LEVEL_RF|RIG_LEVEL_SQL|RIG_LEVEL_AGC|RIG_LEVEL_MICGAIN|RIG_LEVEL_KEYSPD|RIG_LEVEL_CWPITCH| \
RIG_LEVEL_MONITOR_GAIN|RIG_LEVEL_NB|RIG_LEVEL_NR|RIG_LEVEL_PREAMP|RIG_LEVEL_COMP|RIG_LEVEL_ATT|RIG_LEVEL_VOXDELAY|RIG_LEVEL_VOXGAIN|RIG_LEVEL_BKIN_DLYMS| \
RIG_LEVEL_METER|RIG_LEVEL_SLOPE_HIGH|RIG_LEVEL_SLOPE_LOW)
#define TS2000_FUNC_ALL (RIG_FUNC_NB|RIG_FUNC_COMP|RIG_FUNC_VOX|RIG_FUNC_NR|RIG_FUNC_NR|RIG_FUNC_BC|RIG_FUNC_BC2|RIG_FUNC_RIT|RIG_FUNC_XIT| \
RIG_FUNC_TUNER|RIG_FUNC_MON|RIG_FUNC_FBKIN|RIG_FUNC_LOCK|RIG_FUNC_TONE|RIG_FUNC_TSQL|RIG_FUNC_ANF)
#define TS2000_MAINVFO (RIG_VFO_A|RIG_VFO_B)
#define TS2000_SUBVFO (RIG_VFO_C)
#define TS2000_VFO_OPS (RIG_OP_UP|RIG_OP_DOWN|RIG_OP_BAND_UP|RIG_OP_BAND_DOWN|RIG_OP_CPY|RIG_OP_TUNE)
#define TS2000_SCAN_OP (RIG_SCAN_VFO)
#define TS2000_ANTS (RIG_ANT_1|RIG_ANT_2)
#define TS2000_STR_CAL {9, {\
{0x00, -54},\
{0x03, -48},\
{0x06, -36},\
{0x09, -24},\
{0x0C, -12},\
{0x0F, 0},\
{0x14, 20},\
{0x19, 40},\
{0x1E, 60}}\
}
#define TS2000_SWR_CAL { 5, \
{ \
{ 0, 1.0f }, \
{ 4, 1.5f }, \
{ 8, 2.0f }, \
{ 12, 3.0f }, \
{ 20, 10.0f } \
} }
#define TOK_FUNC_NOISE_REDUCTION_2 TOKEN_BACKEND(102)
#define TOK_LEVEL_DSP_RX_EQUALIZER TOKEN_BACKEND(104)
#define TOK_LEVEL_DSP_TX_EQUALIZER TOKEN_BACKEND(105)
#define TOK_LEVEL_DSP_TX_BANDWIDTH TOKEN_BACKEND(106)
#define TOK_LEVEL_BEEP_VOLUME TOKEN_BACKEND(107)
#define TOK_LEVEL_TX_SIDETONE_VOLUME TOKEN_BACKEND(108)
/*
* 38 CTCSS sub-audible tones + 1750 tone
*/
tone_t ts2000_ctcss_list[] =
{
670, 719, 744, 770, 797, 825, 854, 885, 915, 948,
974, 1000, 1035, 1072, 1109, 1148, 1188, 1230, 1273, 1318,
1365, 1413, 1462, 1514, 1567, 1622, 1679, 1738, 1799, 1862,
1928, 2035, 2107, 2181, 2257, 2336, 2418, 2503, 17500,
0,
};
/*
* 103 available DCS codes
*/
tone_t ts2000_dcs_list[] =
{
23, 25, 26, 31, 32, 36, 43, 47, 51, 53,
54, 65, 71, 72, 73, 74, 114, 115, 116, 122, 125, 131,
132, 134, 143, 145, 152, 155, 156, 162, 165, 172, 174, 205,
212, 223, 225, 226, 243, 244, 245, 246, 251, 252, 255, 261,
263, 265, 266, 271, 274, 306, 311, 315, 325, 331, 332, 343,
346, 351, 356, 364, 365, 371, 411, 412, 413, 423, 431, 432,
445, 446, 452, 454, 455, 462, 464, 465, 466, 503, 506, 516,
523, 526, 532, 546, 565, 606, 612, 624, 627, 631, 632, 654,
662, 664, 703, 712, 723, 731, 732, 734, 743, 754,
0,
};
int ts2000_ext_tokens[] =
{
TOK_FUNC_NOISE_REDUCTION_2, TOK_FUNC_FILTER_WIDTH_DATA,
TOK_LEVEL_DSP_RX_EQUALIZER, TOK_LEVEL_DSP_TX_EQUALIZER, TOK_LEVEL_DSP_TX_BANDWIDTH,
TOK_LEVEL_BEEP_VOLUME, TOK_LEVEL_TX_SIDETONE_VOLUME,
TOK_BACKEND_NONE,
};
const struct confparams ts2000_ext_funcs[] =
{
{
TOK_FUNC_NOISE_REDUCTION_2, "NR2", "Noise reduction 2", "Noise reduction 2",
NULL, RIG_CONF_CHECKBUTTON,
},
{ RIG_CONF_END, NULL, }
};
const struct confparams ts2000_ext_levels[] =
{
{
TOK_LEVEL_DSP_RX_EQUALIZER, "DSP_RX_EQUALIZER", "DSP RX equalizer", "DSP RX equalizer type",
NULL, RIG_CONF_COMBO, { .c = { .combostr = { "OFF", "H BOOST", "F PASS", "B BOOST", "CONV-EN", "USER", NULL } } }
},
{
TOK_LEVEL_DSP_TX_EQUALIZER, "DSP_TX_EQUALIZER", "DSP TX equalizer", "DSP TX equalizer type",
NULL, RIG_CONF_COMBO, { .c = { .combostr = { "OFF", "H BOOST", "F PASS", "B BOOST", "CONV-EN", "USER", NULL } } }
},
{
TOK_LEVEL_DSP_TX_BANDWIDTH, "DSP_TX_BANDWIDTH", "DSP TX bandwidth", "DSP TX bandwidth for SSB and AM",
NULL, RIG_CONF_COMBO, { .c = { .combostr = { "2.0 kHz", "2.2 kHz", "2.4 kHz", "2.6 kHz", "2.8 kHz", "3.0 kHz", NULL } } }
},
{
TOK_LEVEL_BEEP_VOLUME, "BEEP_VOLUME", "Beep volume", "Beep volume",
NULL, RIG_CONF_NUMERIC, { .n = { .min = 0, .max = 9, .step = 1 } }
},
{
TOK_LEVEL_TX_SIDETONE_VOLUME, "TX_SIDETONE_VOLUME", "TX sidetone volume", "TX sidetone volume",
NULL, RIG_CONF_NUMERIC, { .n = { .min = 0, .max = 9, .step = 1 } }
},
{ RIG_CONF_END, NULL, }
};
static struct kenwood_filter_width ts2000_filter_width[] =
{
{ RIG_MODE_CW | RIG_MODE_CWR, 50, 50 },
{ RIG_MODE_CW | RIG_MODE_CWR, 80, 80 },
{ RIG_MODE_CW | RIG_MODE_CWR, 100, 100 },
{ RIG_MODE_CW | RIG_MODE_CWR, 150, 150 },
{ RIG_MODE_CW | RIG_MODE_CWR, 200, 200 },
{ RIG_MODE_CW | RIG_MODE_CWR, 300, 300 },
{ RIG_MODE_CW | RIG_MODE_CWR, 400, 400 },
{ RIG_MODE_CW | RIG_MODE_CWR, 500, 500 },
{ RIG_MODE_CW | RIG_MODE_CWR, 600, 600 },
{ RIG_MODE_CW | RIG_MODE_CWR, 1000, 1000 },
{ RIG_MODE_CW | RIG_MODE_CWR, 2000, 2000 },
{ RIG_MODE_RTTY | RIG_MODE_RTTYR, 250, 250 },
{ RIG_MODE_RTTY | RIG_MODE_RTTYR, 500, 500 },
{ RIG_MODE_RTTY | RIG_MODE_RTTYR, 1000, 1000 },
{ RIG_MODE_RTTY | RIG_MODE_RTTYR, 1500, 1500 },
{ RIG_MODE_SSB, 0, 2400 },
{ RIG_MODE_SSB, 1, 500 }, // NAR1 optional filter
{ RIG_MODE_SSB, 2, 270 }, // NAR2 optional filter
{ RIG_MODE_FM, 0, 6000 },
{ RIG_MODE_FM, 1, 12000 },
{ RIG_MODE_AM, 0, 2400 },
{ RIG_MODE_AM, 1, 6000 }, // NAR1 optional filter (?)
{ RIG_MODE_NONE, -1, -1 },
};
static struct kenwood_slope_filter ts2000_slope_filter_high[] =
{
{ RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 0, 1400 },
{ RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 1, 1600 },
{ RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 2, 1800 },
{ RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 3, 2000 },
{ RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 4, 2200 },
{ RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 5, 2400 },
{ RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 6, 2600 },
{ RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 7, 2800 },
{ RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 8, 3000 },
{ RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 9, 3400 },
{ RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 10, 4000 },
{ RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 11, 5000 },
{ RIG_MODE_AM, 0, 0, 2500 },
{ RIG_MODE_AM, 0, 1, 3000 },
{ RIG_MODE_AM, 0, 2, 4000 },
{ RIG_MODE_AM, 0, 3, 5000 },
{ RIG_MODE_SSB | RIG_MODE_RTTY | RIG_MODE_RTTYR | RIG_MODE_FM | RIG_MODE_AM, 1, 0, 170 },
{ RIG_MODE_SSB | RIG_MODE_RTTY | RIG_MODE_RTTYR | RIG_MODE_FM | RIG_MODE_AM, 1, 1, 1930 },
{ RIG_MODE_SSB | RIG_MODE_RTTY | RIG_MODE_RTTYR | RIG_MODE_FM | RIG_MODE_AM, 1, 2, 2160 },
{ RIG_MODE_NONE, 0, -1, -1 },
};
static struct kenwood_slope_filter ts2000_slope_filter_low[] =
{
{ RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 0, 0 },
{ RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 1, 50 },
{ RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 2, 100 },
{ RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 3, 200 },
{ RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 4, 300 },
{ RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 5, 400 },
{ RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 6, 500 },
{ RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 7, 600 },
{ RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 8, 700 },
{ RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 9, 800 },
{ RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 10, 900 },
{ RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 10, 1, 1000 },
{ RIG_MODE_AM, 0, 0, 0 },
{ RIG_MODE_AM, 0, 1, 100 },
{ RIG_MODE_AM, 0, 2, 200 },
{ RIG_MODE_AM, 0, 3, 500 },
{ RIG_MODE_SSB | RIG_MODE_RTTY | RIG_MODE_RTTYR | RIG_MODE_FM | RIG_MODE_AM, 1, 0, 2500 },
{ RIG_MODE_SSB | RIG_MODE_RTTY | RIG_MODE_RTTYR | RIG_MODE_FM | RIG_MODE_AM, 1, 1, 1000 },
{ RIG_MODE_NONE, 0, -1, -1 },
};
static struct kenwood_priv_caps ts2000_priv_caps =
{
.cmdtrm = EOM_KEN,
.filter_width = ts2000_filter_width,
.slope_filter_high = ts2000_slope_filter_high,
.slope_filter_low = ts2000_slope_filter_low,
};
/* memory capabilities */
#define TS2000_MEM_CAP { \
.freq = 1, \
.mode = 1, \
.tx_freq=1, \
.tx_mode=1, \
.split=1, \
.rptr_shift=1, \
.rptr_offs=1, \
.funcs=RIG_FUNC_REV|RIG_FUNC_TONE|RIG_FUNC_TSQL,\
.tuning_step=1, \
.ctcss_tone=1, \
.ctcss_sql=1, \
.dcs_code=1, \
.dcs_sql=1, \
.scan_group=1, \
.flags=1, \
.channel_desc=1 \
}
/*
* Function definitions below
*/
int ts2000_init(RIG *rig)
{
struct kenwood_priv_data *priv;
int retval;
ENTERFUNC;
retval = kenwood_init(rig);
if (retval != RIG_OK)
{
return retval;
}
priv = (struct kenwood_priv_data *) rig->state.priv;
priv->ag_format = 3;
priv->micgain_min = 0;
priv->micgain_max = 100;
RETURNFUNC(RIG_OK);
}
static int ts2000_set_ex_menu(RIG *rig, int number, int value_len, int value)
{
char buf[20];
ENTERFUNC;
SNPRINTF(buf, sizeof(buf), "EX%03d0000%0*d", number, value_len, value);
RETURNFUNC(kenwood_transaction(rig, buf, NULL, 0));
}
static int ts2000_get_ex_menu(RIG *rig, int number, int value_len, int *value)
{
int retval;
char buf[20];
char ackbuf[20];
rig_debug(RIG_DEBUG_TRACE, "%s called\n", __func__);
SNPRINTF(buf, sizeof(buf), "EX%03d0000", number);
retval = kenwood_safe_transaction(rig, buf, ackbuf, sizeof(ackbuf),
9 + value_len);
if (retval != RIG_OK)
{
RETURNFUNC2(retval);
}
sscanf(ackbuf + 9, "%d", value);
RETURNFUNC2(RIG_OK);
}
static int ts2000_set_func(RIG *rig, vfo_t vfo, setting_t func, int status)
{
char buf[20];
rig_debug(RIG_DEBUG_TRACE, "%s called\n", __func__);
switch (func)
{
case RIG_FUNC_MON:
SNPRINTF(buf, sizeof(buf), "ML00%c", (status == 0) ? '0' : '1');
RETURNFUNC(kenwood_transaction(rig, buf, NULL, 0));
case RIG_FUNC_LOCK:
SNPRINTF(buf, sizeof(buf), "LK%c%c", (status == 0) ? '0' : '1',
(status == 0) ? '0' : '1');
RETURNFUNC(kenwood_transaction(rig, buf, NULL, 0));
default:
return kenwood_set_func(rig, vfo, func, status);
}
}
static int ts2000_get_func(RIG *rig, vfo_t vfo, setting_t func, int *status)
{
char buf[20];
int retval;
ENTERFUNC;
switch (func)
{
case RIG_FUNC_MON:
{
int raw_value;
retval = kenwood_safe_transaction(rig, "ML", buf, sizeof(buf), 5);
if (retval != RIG_OK)
{
RETURNFUNC(retval);
}
sscanf(buf, "ML%d", &raw_value);
*status = (raw_value > 0);
break;
}
case RIG_FUNC_LOCK:
retval = kenwood_safe_transaction(rig, "LK", buf, sizeof(buf), 4);
if (retval != RIG_OK)
{
RETURNFUNC(retval);
}
*status = buf[2] != '0' || buf[3] != '0';
break;
default:
return kenwood_get_func(rig, vfo, func, status);
}
RETURNFUNC(RIG_OK);
}
/*
* WARNING: The commands differ slightly from the general versions in kenwood.c
* e.g.: "SQ"=>"SQ0" , "AG"=>"AG0"
*/
static int ts2000_set_level(RIG *rig, vfo_t vfo, setting_t level, value_t val)
{
char levelbuf[16];
int kenwood_val;
char vfo_num = (vfo == RIG_VFO_C) ? '1' : '0';
rig_debug(RIG_DEBUG_TRACE, "%s called\n", __func__);
switch (level)
{
case RIG_LEVEL_RF:
kenwood_val = val.f * 255;
SNPRINTF(levelbuf, sizeof(levelbuf), "RG%03d", kenwood_val);
break;
case RIG_LEVEL_AF:
return kenwood_set_level(rig, vfo, level, val);
case RIG_LEVEL_SQL:
kenwood_val = val.f * 255;
SNPRINTF(levelbuf, sizeof(levelbuf), "SQ%c%03d", vfo_num, kenwood_val);
break;
case RIG_LEVEL_AGC:
/* Possible values for TS-2000 are 0(=off)-020(=slow) */
switch (val.i)
{
case RIG_AGC_OFF:
kenwood_val = 0;
break;
case RIG_AGC_SUPERFAST:
kenwood_val = 1;
break;
case RIG_AGC_FAST:
kenwood_val = 5;
break;
case RIG_AGC_MEDIUM:
kenwood_val = 10;
break;
case RIG_AGC_SLOW:
kenwood_val = 20;
break;
default:
rig_debug(RIG_DEBUG_ERR, "%s: unsupported agc value", __func__);
return -RIG_EINVAL;
}
SNPRINTF(levelbuf, sizeof(levelbuf), "GT%03d", kenwood_val);
break;
case RIG_LEVEL_MONITOR_GAIN:
kenwood_val = val.f * 9.0;
SNPRINTF(levelbuf, sizeof(levelbuf), "ML%03d", kenwood_val);
break;
case RIG_LEVEL_NB:
kenwood_val = val.f * 10.0;
SNPRINTF(levelbuf, sizeof(levelbuf), "NL%03d", kenwood_val);
break;
case RIG_LEVEL_NR:
kenwood_val = val.f * 9.0;
SNPRINTF(levelbuf, sizeof(levelbuf), "RL%02d", kenwood_val);
break;
case RIG_LEVEL_PREAMP:
if (val.i != 12 && val.i != 0)
{
RETURNFUNC(-RIG_EINVAL);
}
SNPRINTF(levelbuf, sizeof(levelbuf), "PA%c", (val.i == 12) ? '1' : '0');
break;
case RIG_LEVEL_ATT:
if (val.i != 12 && val.i != 0)
{
RETURNFUNC(-RIG_EINVAL);
}
SNPRINTF(levelbuf, sizeof(levelbuf), "RA%02d", (val.i == 12) ? 1 : 0);
break;
case RIG_LEVEL_METER:
switch (val.i)
{
case RIG_METER_SWR:
kenwood_val = 1;
break;
case RIG_METER_COMP:
kenwood_val = 2;
break;
case RIG_METER_ALC:
kenwood_val = 3;
break;
default:
RETURNFUNC(-RIG_EINVAL);
}
SNPRINTF(levelbuf, sizeof(levelbuf), "RM%d", kenwood_val);
break;
case RIG_LEVEL_CWPITCH:
if (val.i > 1000 || val.i < 400)
{
RETURNFUNC(-RIG_EINVAL);
}
RETURNFUNC(ts2000_set_ex_menu(rig, 31, 2, (val.i - 400) / 50));
default:
return kenwood_set_level(rig, vfo, level, val);
}
return kenwood_transaction(rig, levelbuf, NULL, 0);
}
// TS-2000 can only read one meter at a time and the user must select
// the meter using RIG_LEVEL_METER. This function returns the meter value if
// the selected meter matches the expected meter.
static int ts2000_read_meter(RIG *rig, int expected_meter, int *value)
{
int retval;
char cmdbuf[8];
struct rig_state *rs = &rig->state;
char ackbuf[32];
int expected_len = 8;
int read_meter;
int read_value;
ENTERFUNC;
SNPRINTF(cmdbuf, sizeof(cmdbuf), "RM;");
retval = write_block(&rs->rigport, (unsigned char *) cmdbuf, strlen(cmdbuf));
rig_debug(RIG_DEBUG_TRACE, "%s: write_block retval=%d\n", __func__, retval);
if (retval != RIG_OK)
{
RETURNFUNC(retval);
}
// TS-2000 returns values for a single meter at the same time, for example: RM10000;
retval = read_string(&rs->rigport, (unsigned char *) ackbuf, expected_len + 1,
NULL, 0, 0, 1);
rig_debug(RIG_DEBUG_TRACE, "%s: read_string retval=%d\n", __func__, retval);
if (retval < 0)
{
rig_debug(RIG_DEBUG_ERR, "%s: failed to read rig response\n", __func__);
RETURNFUNC(retval);
}
if (retval != expected_len)
{
rig_debug(RIG_DEBUG_ERR, "%s: expected %d bytes, got %d in '%s'\n", __func__,
expected_len, retval, ackbuf);
RETURNFUNC(-RIG_EPROTO);
}
retval = sscanf(ackbuf, "RM%1d%d;", &read_meter, &read_value);
if (retval != 2)
{
rig_debug(RIG_DEBUG_ERR,
"%s: expected 2 values to parse for meters, got %d in '%s'\n", __func__, retval,
ackbuf);
RETURNFUNC(-RIG_EPROTO);
}
if (read_meter == expected_meter)
{
*value = read_value;
}
else
{
*value = 0;
}
RETURNFUNC(RIG_OK);
}
static int ts2000_get_level(RIG *rig, vfo_t vfo, setting_t level, value_t *val)
{
char cmdbuf[8];
char ackbuf[50];
size_t ack_len, ack_len_expected;
int levelint;
int retval;
char vfo_num = (vfo == RIG_VFO_C) ? '1' : '0';
ENTERFUNC;
switch (level)
{
case RIG_LEVEL_AF:
return kenwood_get_level(rig, vfo, level, val);
case RIG_LEVEL_RF:
retval = kenwood_transaction(rig, "RG", ackbuf, sizeof(ackbuf));
if (RIG_OK != retval)
{
return retval;
}
ack_len = strlen(ackbuf);
if (5 != ack_len)
{
return -RIG_EPROTO;
}
if (1 != sscanf(&ackbuf[2], "%d", &levelint))
{
return -RIG_EPROTO;
}
val->f = levelint / (float) 255;
return RIG_OK;
case RIG_LEVEL_SQL:
SNPRINTF(cmdbuf, sizeof(cmdbuf), "SQ%c", vfo_num);
retval = kenwood_transaction(rig, cmdbuf, ackbuf, sizeof(ackbuf));
ack_len_expected = 6;
if (retval != RIG_OK)
{
return retval;
}
ack_len = strlen(ackbuf);
if (ack_len != ack_len_expected)
{
return -RIG_EPROTO;
}
if (sscanf(&ackbuf[ack_len_expected - 3], "%d", &levelint) != 1)
{
return -RIG_EPROTO;
}
val->f = (float) levelint / 255.f;
return RIG_OK;
case RIG_LEVEL_AGC:
retval = kenwood_transaction(rig, "GT", ackbuf, sizeof(ackbuf));
ack_len_expected = 5;
if (RIG_OK != retval)
{
return retval;
}
ack_len = strlen(ackbuf);
if (ack_len != ack_len_expected)
{
return -RIG_EPROTO;
}
if (1 != sscanf(&ackbuf[ack_len_expected - 3], "%d", &levelint))
{
return -RIG_EPROTO;
}
if (levelint == 0)
{
val->i = RIG_AGC_OFF;
}
else if (levelint <= 1)
{
val->i = RIG_AGC_SUPERFAST;
}
else if (levelint <= 5)
{
val->i = RIG_AGC_FAST;
}
else if (levelint <= 10)
{
val->i = RIG_AGC_MEDIUM;
}
else
{
val->i = RIG_AGC_SLOW;
}
return RIG_OK;
case RIG_LEVEL_STRENGTH:
if (rig->state.cache.ptt != RIG_PTT_OFF)
{
val->i = -9 * 6;
break;
}
return kenwood_get_level(rig, vfo, level, val);
case RIG_LEVEL_MONITOR_GAIN:
{
int raw_value;
retval = kenwood_safe_transaction(rig, "ML", ackbuf, sizeof(ackbuf), 5);
if (retval != RIG_OK)
{
RETURNFUNC(retval);
}
sscanf(ackbuf, "ML%d", &raw_value);
val->f = (float) raw_value / 9.0f;
break;
}
case RIG_LEVEL_NB:
{
int raw_value;
retval = kenwood_safe_transaction(rig, "NL", ackbuf, sizeof(ackbuf), 5);
if (retval != RIG_OK)
{
RETURNFUNC(retval);
}
sscanf(ackbuf, "NL%d", &raw_value);
val->f = (float) raw_value / 10.0f;
break;
}
case RIG_LEVEL_NR:
{
int raw_value;
retval = kenwood_safe_transaction(rig, "RL", ackbuf, sizeof(ackbuf), 4);
if (retval != RIG_OK)
{
RETURNFUNC(retval);
}
sscanf(ackbuf, "RL%d", &raw_value);
val->f = (float) raw_value / 9.0f;
break;
}
case RIG_LEVEL_PREAMP:
retval = kenwood_safe_transaction(rig, "PA", ackbuf, sizeof(ackbuf), 4);
if (retval != RIG_OK)
{
RETURNFUNC(retval);
}
val->i = ackbuf[2] == '1' ? 12 : 0;
break;
case RIG_LEVEL_ATT:
retval = kenwood_safe_transaction(rig, "RA", ackbuf, sizeof(ackbuf), 6);
if (retval != RIG_OK)
{
RETURNFUNC(retval);
}
val->i = ackbuf[3] == '1' ? 12 : 0;
break;
case RIG_LEVEL_METER:
{
int raw_value;
// TODO: Read all meters at the same time: RM10000;RM20000;RM30000;
retval = kenwood_safe_transaction(rig, "RM", ackbuf, sizeof(ackbuf), 7);
if (retval != RIG_OK)
{
RETURNFUNC(retval);
}
sscanf(ackbuf, "RM%1d", &raw_value);
switch (raw_value)
{
case 1:
val->i = RIG_METER_SWR;
break;
case 2:
val->i = RIG_METER_COMP;
break;
case 3:
val->i = RIG_METER_ALC;
break;
default:
val->i = RIG_METER_NONE;
}
break;
}
case RIG_LEVEL_SWR:
case RIG_LEVEL_COMP_METER:
case RIG_LEVEL_ALC:
{
int meter;
int swr;
int comp;
int *value;
int alc;
switch (level)
{
case RIG_LEVEL_SWR:
meter = 1;
value = &swr;
break;
case RIG_LEVEL_COMP_METER:
meter = 2;
value = &comp;
break;
case RIG_LEVEL_ALC:
meter = 3;
value = &alc;
break;
default:
RETURNFUNC(-RIG_EINVAL);
}
retval = ts2000_read_meter(rig, meter, value);
if (retval != RIG_OK)
{
RETURNFUNC(retval);
}
switch (level)
{
case RIG_LEVEL_SWR:
if (rig->caps->swr_cal.size)
{
val->f = rig_raw2val_float(swr, &rig->caps->swr_cal);
}
else
{
val->f = (float) swr / 2.0f;
}
break;
case RIG_LEVEL_COMP_METER:
val->f = (float) comp; // Maximum value is 20dB
break;
case RIG_LEVEL_ALC:
// Maximum value is 20, so have the max at 5 just to be on the range where other rigs report ALC
val->f = (float) alc / 4.0f;
break;
default:
return -RIG_ENAVAIL;
}
break;
}
case RIG_LEVEL_RFPOWER_METER:
{
int raw_value;
char read_vfo_num;
if (rig->state.cache.ptt == RIG_PTT_OFF)
{
val->f = 0;
break;
}
SNPRINTF(cmdbuf, sizeof(cmdbuf), "SM%c", vfo_num);
retval = kenwood_safe_transaction(rig, cmdbuf, ackbuf, sizeof(ackbuf), 7);
if (retval != RIG_OK)
{
RETURNFUNC(retval);
}
sscanf(ackbuf, "SM%c%d", &read_vfo_num, &raw_value);
if (vfo_num == '1')
{
val->f = (float) raw_value / 15.0f;
}
else
{
val->f = (float) raw_value / 30.0f;
}
break;
}
case RIG_LEVEL_CWPITCH:
{
int raw_value;
retval = ts2000_get_ex_menu(rig, 31, 2, &raw_value);
if (retval != RIG_OK)
{
RETURNFUNC(retval);
}
val->i = 400 + raw_value * 50;
break;
}
default:
return kenwood_get_level(rig, vfo, level, val);
}
RETURNFUNC(RIG_OK);
}
static int ts2000_set_rit(RIG *rig, vfo_t vfo, shortfreq_t rit)
{
char buf[20];
int retval;
int rit_enabled;
int xit_enabled;
ENTERFUNC;
if (rit < -19999 || rit > 19999)
{
RETURNFUNC(-RIG_EINVAL);
}
// RC clear command cannot be executed if RIT/XIT is not enabled
retval = kenwood_get_func(rig, vfo, RIG_FUNC_RIT, &rit_enabled);
if (retval != RIG_OK)
{
RETURNFUNC(retval);
}
if (!rit_enabled)
{
retval = kenwood_get_func(rig, vfo, RIG_FUNC_XIT, &xit_enabled);
if (retval != RIG_OK)
{
RETURNFUNC(retval);
}
}
if (!rit_enabled && !xit_enabled)
{
retval = kenwood_set_func(rig, vfo, RIG_FUNC_RIT, 1);
if (retval != RIG_OK)
{
RETURNFUNC(retval);
}
}
retval = kenwood_transaction(rig, "RC", NULL, 0);
if (retval != RIG_OK)
{
RETURNFUNC(retval);
}
if (!rit_enabled && !xit_enabled)
{
retval = kenwood_set_func(rig, vfo, RIG_FUNC_RIT, 0);
if (retval != RIG_OK)
{
RETURNFUNC(retval);
}
}
if (rit == 0)
{
RETURNFUNC(RIG_OK);
}
SNPRINTF(buf, sizeof(buf), "R%c%05d", (rit > 0) ? 'U' : 'D', abs((int) rit));
retval = kenwood_transaction(rig, buf, NULL, 0);
RETURNFUNC(retval);
}
static int ts2000_get_rit(RIG *rig, vfo_t vfo, shortfreq_t *rit)
{
int retval;
char buf[7];
struct kenwood_priv_data *priv = rig->state.priv;
ENTERFUNC;
if (!rit)
{
RETURNFUNC(-RIG_EINVAL);
}
retval = kenwood_get_if(rig);
if (retval != RIG_OK)
{
RETURNFUNC(retval);
}
memcpy(buf, &priv->info[18], 5);
buf[6] = '\0';
*rit = atoi(buf);
RETURNFUNC(RIG_OK);
}
static int ts2000_set_ext_func(RIG *rig, vfo_t vfo, token_t token, int status)
{
char cmdbuf[20];
int retval;
ENTERFUNC;
switch (token)
{
case TOK_FUNC_NOISE_REDUCTION_2:
if (status < 0 || status > 1)
{
RETURNFUNC(-RIG_EINVAL);
}
SNPRINTF(cmdbuf, sizeof(cmdbuf), "NR%d", status ? 2 : 0);
retval = kenwood_transaction(rig, cmdbuf, NULL, 0);
break;
default:
RETURNFUNC(-RIG_EINVAL);
}
RETURNFUNC(retval);
}
static int ts2000_get_ext_func(RIG *rig, vfo_t vfo, token_t token, int *status)
{
char ackbuf[20];
int retval;
ENTERFUNC;
switch (token)
{
case TOK_FUNC_NOISE_REDUCTION_2:
{
int value;
retval = kenwood_safe_transaction(rig, "NR", ackbuf, sizeof(ackbuf), 3);
if (retval != RIG_OK)
{
RETURNFUNC(retval);
}
sscanf(ackbuf, "NR%d", &value);
*status = (value == 2) ? 1 : 0;
break;
}
default:
RETURNFUNC(-RIG_EINVAL);
}
RETURNFUNC(retval);
}
static int ts2000_set_ext_level(RIG *rig, vfo_t vfo, token_t token, value_t val)
{
int retval;
ENTERFUNC;
switch (token)
{
case TOK_LEVEL_DSP_RX_EQUALIZER:
if (val.i < 0 || val.i > 5)
{
RETURNFUNC(-RIG_EINVAL);
}
retval = ts2000_set_ex_menu(rig, 20, 1, val.i);
break;
case TOK_LEVEL_DSP_TX_EQUALIZER:
if (val.i < 0 || val.i > 5)
{
RETURNFUNC(-RIG_EINVAL);
}
retval = ts2000_set_ex_menu(rig, 21, 1, val.i);
break;
case TOK_LEVEL_DSP_TX_BANDWIDTH:
if (val.i < 0 || val.i > 5)
{
RETURNFUNC(-RIG_EINVAL);
}
retval = ts2000_set_ex_menu(rig, 22, 1, val.i);
break;
case TOK_LEVEL_BEEP_VOLUME:
if (val.f < 0 || val.f > 9)
{
RETURNFUNC(-RIG_EINVAL);
}
retval = ts2000_set_ex_menu(rig, 12, 1, (int) val.f);
break;
case TOK_LEVEL_TX_SIDETONE_VOLUME:
if (val.f < 0 || val.f > 9)
{
RETURNFUNC(-RIG_EINVAL);
}
retval = ts2000_set_ex_menu(rig, 13, 1, (int) val.f);
break;
default:
RETURNFUNC(-RIG_EINVAL);
}
RETURNFUNC(retval);
}
static int ts2000_get_ext_level(RIG *rig, vfo_t vfo, token_t token,
value_t *val)
{
int retval;
int value;
ENTERFUNC;
switch (token)
{
case TOK_LEVEL_DSP_RX_EQUALIZER:
retval = ts2000_get_ex_menu(rig, 20, 1, &value);
val->i = value;
break;
case TOK_LEVEL_DSP_TX_EQUALIZER:
retval = ts2000_get_ex_menu(rig, 21, 1, &value);
val->i = value;
break;
case TOK_LEVEL_DSP_TX_BANDWIDTH:
retval = ts2000_get_ex_menu(rig, 22, 1, &value);
val->i = value;
break;
case TOK_LEVEL_BEEP_VOLUME:
retval = ts2000_get_ex_menu(rig, 12, 1, &value);
val->f = value;
break;
case TOK_LEVEL_TX_SIDETONE_VOLUME:
retval = ts2000_get_ex_menu(rig, 13, 1, &value);
val->f = value;
break;
default:
RETURNFUNC(-RIG_EINVAL);
}
RETURNFUNC(retval);
}
/*
* ts2000_get_channel
* Read command format:
M|R|P1|P2|P3|P3|;|
* P1: 0 - RX frequency, 1 - TX frequency
Memory channel 290 ~ 299: P1=0 (start frequency), P1=1 (end frequency)
P2 - bank number
allowed values: <space>, 0, 1 or 2
P3 - channel number 00-99
Returned value:
M | R |P1 |P2 |P3 |P3 |P4 |P4 |P4 |P4 |
P4 |P4 |P4 |P4 |P4 |P4 |P4 |P5 |P6 |P7 |
P8 |P8 |P9 |P9 |P10|P10|P10|P11|P12|P13|
P13|P13|P13|P13|P13|P13|P13|P13|P14|P14|
P15|P16|P16|P16|P16|P16|P16|P16|P16| ; |
P1 - P3 described above
P4: Frequency in Hz (11-digit).
P5: Mode. 1: LSB, 2: USB, 3: CW, 4: FM, 5: AM, 6: FSK, 7: CR-R, 8: Reserved, 9: FSK-R
P6: Lockout status. 0: Lockout OFF, 1: Lockout ON.
P7: 0: OFF, 1: TONE, 2: CTCSS, 3: DCS.
P8: Tone Number. Allowed values 01 (67Hz) - 38 (250.3Hz)
P9: CTCSS tone number. Allowed values 01 (67Hz) - 38 (250.3Hz)
P10: DCS code. Allowed values 000 (023 DCS code) to 103 (754 DCS code).
P11: REVERSE status.
P12: SHIFT status. 0: Simplex, 1: +, 2: –, 3: = (All E-types)
P13: Offset frequency in Hz (9-digit).
Allowed values 000000000 - 059950000 in steps of 50000. Unused digits must be 0.
P14: Step size. Allowed values:
for SSB, CW, FSK mode: 00 - 03
00: 1 kHz, 01: 2.5 kHz, 02: 5 kHz, 03: 10 kHz
for AM, FM mode: 00 - 09
00: 5 kHz, 01: 6.25 kHz, 02: 10 kHz, 03: 12.5 kHz, 04: 15 kHz,
05: 20 kHz, 06: 25 kHz, 07: 30 kHz, 08: 50 kHz, 09: 100 kHz
P15: Memory Group number (0 ~ 9).
P16: Memory name. A maximum of 8 characters.
*/
int ts2000_get_channel(RIG *rig, vfo_t vfo, channel_t *chan, int read_only)
{
int err;
int tmp;
size_t length;
char buf[52];
char cmd[8];
struct kenwood_priv_caps *caps = kenwood_caps(rig);
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
if (!chan || chan->vfo != RIG_VFO_MEM)
{
return -RIG_EINVAL;
}
/* put channel num in the command string */
SNPRINTF(cmd, sizeof(cmd), "MR0%03d;", chan->channel_num);
err = kenwood_transaction(rig, cmd, buf, sizeof(buf));
if (err != RIG_OK)
{
return err;
}
length = strlen(buf);
memset(chan, 0x00, sizeof(channel_t));
chan->vfo = RIG_VFO_MEM;
/* parse from right to left */
/* XXX based on the available documentation, there is no command
* to read out the filters of a given memory channel. The rig, however,
* stores this information.
*/
/* First check if a name is assigned.
Name is returned at positions 41-48 (counting from 0) */
if (length > 41)
{
// rig_debug(RIG_DEBUG_VERBOSE, "Copying channel description: %s\n", &buf[ 41 ] );
strcpy(chan->channel_desc, &buf[ 41 ]);
}
/* Memory group no */
chan->scan_group = buf[ 40 ] - '0';
/* Fields 38-39 contain tuning step as a number 00 - 09.
Tuning step depends on this number and the mode,
just save it for now */
buf[ 40 ] = '\0';
tmp = atoi(&buf[ 38]);
/* Offset frequency */
buf[ 38 ] = '\0';
chan->rptr_offs = atoi(&buf[ 29 ]);
/* Shift type
WARNING: '=' shift type not programmed */
if (buf[ 28 ] == '1')
{
chan->rptr_shift = RIG_RPT_SHIFT_PLUS;
}
else
{
if (buf[ 28 ] == '2')
{
chan->rptr_shift = RIG_RPT_SHIFT_MINUS;
}
else
{
chan->rptr_shift = RIG_RPT_SHIFT_NONE;
}
}
/* Reverse status */
if (buf[27] == '1')
{
chan->funcs |= RIG_FUNC_REV;
}
/* Check for tone, CTCSS and DCS */
/* DCS code first */
if (buf[ 19 ] == '3')
{
if (rig->caps->dcs_list)
{
buf[ 27 ] = '\0';
chan->dcs_code = rig->caps->dcs_list[ atoi(&buf[ 24 ]) ];
chan->dcs_sql = chan->dcs_code;
chan->ctcss_tone = 0;
chan->ctcss_sql = 0;
}
}
else
{
chan->dcs_code = 0;
chan->dcs_sql = 0;
/* CTCSS code
Caution, CTCSS codes, unlike DCS codes, are numbered from 1! */
buf[ 24 ] = '\0';
if (buf[ 19 ] == '2')
{
chan->funcs |= RIG_FUNC_TSQL;
if (rig->caps->ctcss_list)
{
chan->ctcss_sql = rig->caps->ctcss_list[ atoi(&buf[22]) - 1 ];
chan->ctcss_tone = 0;
}
}
else
{
chan->ctcss_sql = 0;
/* CTCSS tone */
if (buf[ 19 ] == '1')
{
chan->funcs |= RIG_FUNC_TONE;
buf[ 22 ] = '\0';
if (rig->caps->ctcss_list)
{
chan->ctcss_tone = rig->caps->ctcss_list[ atoi(&buf[20]) - 1 ];
}
}
else
{
chan->ctcss_tone = 0;
}
}
}
/* memory lockout */
if (buf[18] == '1')
{
chan->flags |= RIG_CHFLAG_SKIP;
}
/* mode */
chan->mode = kenwood2rmode(buf[17] - '0', caps->mode_table);
/* Now we have the mode, let's finish the tuning step */
if ((chan->mode == RIG_MODE_AM) || (chan->mode == RIG_MODE_FM))
{
switch (tmp)
{
case 0: chan->tuning_step = kHz(5); break;
case 1: chan->tuning_step = kHz(6.25); break;
case 2: chan->tuning_step = kHz(10); break;
case 3: chan->tuning_step = kHz(12.5); break;
case 4: chan->tuning_step = kHz(15); break;
case 5: chan->tuning_step = kHz(20); break;
case 6: chan->tuning_step = kHz(25); break;
case 7: chan->tuning_step = kHz(30); break;
case 8: chan->tuning_step = kHz(50); break;
case 9: chan->tuning_step = kHz(100); break;
default: chan->tuning_step = 0;
}
}
else
{
switch (tmp)
{
case 0: chan->tuning_step = kHz(1); break;
case 1: chan->tuning_step = kHz(2.5); break;
case 2: chan->tuning_step = kHz(5); break;
case 3: chan->tuning_step = kHz(10); break;
default: chan->tuning_step = 0;
}
}
/* Frequency */
buf[17] = '\0';
chan->freq = atoi(&buf[6]);
if (chan->freq == RIG_FREQ_NONE)
{
return -RIG_ENAVAIL;
}
buf[6] = '\0';
chan->channel_num = atoi(&buf[3]);
/* Check split freq */
cmd[2] = '1';
err = kenwood_transaction(rig, cmd, buf, sizeof(buf));
if (err != RIG_OK)
{
return err;
}
chan->tx_mode = kenwood2rmode(buf[17] - '0', caps->mode_table);
buf[17] = '\0';
chan->tx_freq = atoi(&buf[6]);
if (chan->freq == chan->tx_freq)
{
chan->tx_freq = RIG_FREQ_NONE;
chan->tx_mode = RIG_MODE_NONE;
chan->split = RIG_SPLIT_OFF;
}
else
{
chan->split = RIG_SPLIT_ON;
}
if (!read_only)
{
// Set rig to channel values
rig_debug(RIG_DEBUG_ERR,
"%s: please contact hamlib mailing list to implement this\n", __func__);
rig_debug(RIG_DEBUG_ERR,
"%s: need to know if rig updates when channel read or not\n", __func__);
return -RIG_ENIMPL;
}
return RIG_OK;
}
int ts2000_set_channel(RIG *rig, vfo_t vfo, const channel_t *chan)
{
char sqltype = '0';
char buf[128];
char mode, tx_mode = 0;
char shift = '0';
short dcscode = 0;
short code = 0;
int tstep = 0;
int err;
int tone = 0;
struct kenwood_priv_caps *caps = kenwood_caps(rig);
rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__);
if (!chan)
{
return -RIG_EINVAL;
}
mode = rmode2kenwood(chan->mode, caps->mode_table);
if (mode < 0)
{
rig_debug(RIG_DEBUG_ERR, "%s: unsupported mode '%s'\n",
__func__, rig_strrmode(chan->mode));
return -RIG_EINVAL;
}
if (chan->split == RIG_SPLIT_ON)
{
tx_mode = rmode2kenwood(chan->tx_mode, caps->mode_table);
if (tx_mode < 0)
{
rig_debug(RIG_DEBUG_ERR, "%s: unsupported mode '%s'\n",
__func__, rig_strrmode(chan->tx_mode));
return -RIG_EINVAL;
}
}
/* find tone */
if (chan->ctcss_tone)
{
for (; rig->caps->ctcss_list[tone] != 0; tone++)
{
if (chan->ctcss_tone == rig->caps->ctcss_list[tone])
{
break;
}
}
if (chan->ctcss_tone != rig->caps->ctcss_list[tone]) { tone = -1; }
else { sqltype = '1'; }
}
else
{
tone = -1; /* -1 because we will add 1 when outputting; this is necessary as CTCSS codes are numbered from 1 */
}
/* find CTCSS code */
if (chan->ctcss_sql)
{
for (; rig->caps->ctcss_list[code] != 0; code++)
{
if (chan->ctcss_sql == rig->caps->ctcss_list[code])
{
break;
}
}
if (chan->ctcss_sql != rig->caps->ctcss_list[code]) { code = -1; }
else { sqltype = '2'; }
}
else
{
code = -1;
}
/* find DCS code */
if (chan->dcs_code)
{
for (; rig->caps->dcs_list[dcscode] != 0; dcscode++)
{
if (chan->dcs_code == rig->caps->dcs_list[dcscode])
{
break;
}
}
if (chan->dcs_code != rig->caps->dcs_list[dcscode]) { dcscode = 0; }
else { sqltype = '3'; }
}
else
{
dcscode = 0;
}
if (chan->rptr_shift == RIG_RPT_SHIFT_PLUS)
{
shift = '1';
}
if (chan->rptr_shift == RIG_RPT_SHIFT_MINUS)
{
shift = '2';
}
if ((chan->mode == RIG_MODE_AM) || (chan->mode == RIG_MODE_FM))
{
switch (chan->tuning_step)
{
case s_kHz(6.25): tstep = 1; break;
case s_kHz(10): tstep = 2; break;
case s_kHz(12.5): tstep = 3; break;
case s_kHz(15): tstep = 4; break;
case s_kHz(20): tstep = 5; break;
case s_kHz(25): tstep = 6; break;
case s_kHz(30): tstep = 7; break;
case s_kHz(50): tstep = 8; break;
case s_kHz(100): tstep = 9; break;
default: tstep = 0;
}
}
else
{
switch (chan->tuning_step)
{
case s_kHz(2.5): tstep = 1; break;
case s_kHz(5): tstep = 2; break;
case s_kHz(10): tstep = 3; break;
default: tstep = 0;
}
}
/* P-number 2-3 4 5 6 7 8 9 101112 13 141516 */
SNPRINTF(buf, sizeof(buf), "MW0%03d%011u%c%c%c%02d%02d%03d%c%c%09d0%c%c%s;",
chan->channel_num,
(unsigned) chan->freq, /* 4 - frequency */
'0' + mode, /* 5 - mode */
(chan->flags & RIG_CHFLAG_SKIP) ? '1' : '0', /* 6 - lockout status */
sqltype, /* 7 - squelch and tone type */
tone + 1, /* 8 - tone code */
code + 1, /* 9 - CTCSS code */
dcscode, /* 10 - DCS code */
(chan->funcs & RIG_FUNC_REV) ? '1' : '0', /* 11 - Reverse status */
shift, /* 12 - shift type */
(int) chan->rptr_offs, /* 13 - offset frequency */
tstep + '0', /* 14 - Step size */
chan->scan_group + '0', /* 15 - Memory group no */
chan->channel_desc /* 16 - description */
);
rig_debug(RIG_DEBUG_VERBOSE, "The command will be: %s\n", buf);
err = kenwood_transaction(rig, buf, NULL, 0);
if (err != RIG_OK)
{
return err;
}
if (chan->split == RIG_SPLIT_ON)
{
SNPRINTF(buf, sizeof(buf), "MW1%03d%011u%c%c%c%02d%02d%03d%c%c%09d0%c%c%s;\n",
chan->channel_num,
(unsigned) chan->tx_freq, /* 4 - frequency */
'0' + tx_mode, /* 5 - mode */
(chan->flags & RIG_CHFLAG_SKIP) ? '1' : '0', /* 6 - lockout status */
sqltype, /* 7 - squelch and tone type */
tone + 1, /* 8 - tone code */
code + 1, /* 9 - CTCSS code */
dcscode + 1, /* 10 - DCS code */
(chan->funcs & RIG_FUNC_REV) ? '1' : '0', /* 11 - Reverse status */
shift, /* 12 - shift type */
(int) chan->rptr_offs, /* 13 - offset frequency */
tstep + '0', /* 14 - Step size */
chan->scan_group + '0', /* Memory group no */
chan->channel_desc /* 16 - description */
);
rig_debug(RIG_DEBUG_VERBOSE, "Split, the command will be: %s\n", buf);
err = kenwood_transaction(rig, buf, NULL, 0);
}
return err;
}
/*
* TS-2000 rig capabilities
*/
const struct rig_caps ts2000_caps =
{
RIG_MODEL(RIG_MODEL_TS2000),
.model_name = "TS-2000",
.mfg_name = "Kenwood",
.version = BACKEND_VER ".1",
.copyright = "LGPL",
.status = RIG_STATUS_STABLE,
.rig_type = RIG_TYPE_TRANSCEIVER,
.ptt_type = RIG_PTT_RIG,
.dcd_type = RIG_DCD_RIG,
.port_type = RIG_PORT_SERIAL,
.serial_rate_min = 1200,
.serial_rate_max = 57600,
.serial_data_bits = 8,
.serial_stop_bits = 1,
.serial_parity = RIG_PARITY_NONE,
.serial_handshake = RIG_HANDSHAKE_NONE,
.write_delay = 0,
.post_write_delay = 0, /* ms */
.timeout = 200,
.retry = 3,
.has_get_func = TS2000_FUNC_ALL,
.has_set_func = TS2000_FUNC_ALL,
.has_get_level = TS2000_LEVEL_GET,
.has_set_level = TS2000_LEVEL_SET,
.has_get_parm = RIG_PARM_NONE,
.has_set_parm = RIG_PARM_NONE,
.level_gran =
{
#include "level_gran_kenwood.h"
[LVL_RAWSTR] = { .min = { .i = 0 }, .max = { .i = 255 } },
[LVL_VOXDELAY] = { .min = { .i = 0 }, .max = { .i = 30 }, .step = { .i = 1 } },
[LVL_KEYSPD] = {.min = {.i = 10}, .max = {.i = 60}, .step = {.i = 1}},
[LVL_CWPITCH] = {.min = {.i = 400}, .max = {.i = 1000}, .step = {.i = 50}},
[LVL_BKIN_DLYMS] = {.min = {.i = 0}, .max = {.i = 1000}, .step = {.i = 50}},
[LVL_SLOPE_LOW] = {.min = {.i = 0}, .max = {.i = 1000}, .step = {.i = 10}},
[LVL_SLOPE_HIGH] = {.min = {.i = 0}, .max = {.i = 5000}, .step = {.i = 10}},
},
.parm_gran = {},
.vfo_ops = TS2000_VFO_OPS,
.scan_ops = TS2000_SCAN_OP,
.ctcss_list = ts2000_ctcss_list,
.dcs_list = ts2000_dcs_list,
.preamp = { 12, RIG_DBLST_END, },
.attenuator = { 12, RIG_DBLST_END, },
.max_rit = kHz(20),
.max_xit = kHz(20),
.max_ifshift = kHz(1),
.targetable_vfo = RIG_TARGETABLE_FREQ,
.transceive = RIG_TRN_RIG,
.agc_level_count = 5,
.agc_levels = { RIG_AGC_OFF, RIG_AGC_SLOW, RIG_AGC_MEDIUM, RIG_AGC_FAST, RIG_AGC_SUPERFAST },
.bank_qty = 0,
.chan_desc_sz = 7,
.chan_list = {
{ 0, 299, RIG_MTYPE_MEM, TS2000_MEM_CAP },
RIG_CHAN_END,
},
.rx_range_list1 = {
{kHz(300), MHz(60), TS2000_ALL_MODES, -1, -1, TS2000_MAINVFO, TS2000_ANTS},
{MHz(144), MHz(146), TS2000_ALL_MODES, -1, -1, TS2000_MAINVFO},
{MHz(430), MHz(440), TS2000_ALL_MODES, -1, -1, TS2000_MAINVFO},
{MHz(144), MHz(146), TS2000_ALL_MODES, -1, -1, TS2000_SUBVFO},
{MHz(430), MHz(440), TS2000_ALL_MODES, -1, -1, TS2000_SUBVFO},
RIG_FRNG_END,
}, /* rx range */
.tx_range_list1 = {
{kHz(1830), kHz(1850), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{kHz(1830), kHz(1850), TS2000_AM_TX_MODES, 2000, 25000, TS2000_MAINVFO, TS2000_ANTS},
{kHz(3500), kHz(3800), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{kHz(3500), kHz(3800), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{MHz(7), kHz(7100), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{MHz(7), kHz(7100), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{MHz(10.1), MHz(10.15), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{MHz(10.1), MHz(10.15), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{MHz(14), kHz(14350), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{MHz(14), kHz(14350), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{kHz(18068), kHz(18168), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{kHz(18068), kHz(18168), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{MHz(21), kHz(21450), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{MHz(21), kHz(21450), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{kHz(24890), kHz(24990), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{kHz(24890), kHz(24990), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{MHz(28), kHz(29700), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{MHz(28), kHz(29700), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{MHz(50), MHz(50.2), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{MHz(50), MHz(50.2), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{MHz(144), MHz(146), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO},
{MHz(144), MHz(146), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO},
{MHz(430), MHz(440), TS2000_OTHER_TX_MODES, W(5), W(50), TS2000_MAINVFO},
{MHz(430), MHz(440), TS2000_AM_TX_MODES, W(5), W(12.5), TS2000_MAINVFO},
RIG_FRNG_END,
}, /* tx range */
.rx_range_list2 = {
{kHz(300), MHz(60), TS2000_ALL_MODES, -1, -1, TS2000_MAINVFO, TS2000_ANTS},
{MHz(142), MHz(152), TS2000_ALL_MODES, -1, -1, TS2000_MAINVFO},
{MHz(420), MHz(450), TS2000_ALL_MODES, -1, -1, TS2000_MAINVFO},
{MHz(118), MHz(174), TS2000_ALL_MODES, -1, -1, TS2000_SUBVFO},
{MHz(220), MHz(512), TS2000_ALL_MODES, -1, -1, TS2000_SUBVFO},
RIG_FRNG_END,
}, /* rx range */
.tx_range_list2 = {
{kHz(1800), MHz(2), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{kHz(1800), MHz(2), TS2000_AM_TX_MODES, 2000, 25000, TS2000_MAINVFO, TS2000_ANTS},
{kHz(3500), MHz(4), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{kHz(3500), MHz(4), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{MHz(7), kHz(7300), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{MHz(7), kHz(7300), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{MHz(10.1), MHz(10.15), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{MHz(10.1), MHz(10.15), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{MHz(14), kHz(14350), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{MHz(14), kHz(14350), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{kHz(18068), kHz(18168), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{kHz(18068), kHz(18168), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{MHz(21), kHz(21450), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{MHz(21), kHz(21450), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{kHz(24890), kHz(24990), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{kHz(24890), kHz(24990), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{MHz(28), kHz(29700), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{MHz(28), kHz(29700), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{MHz(50), MHz(54), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS},
{MHz(50), MHz(54), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS},
{MHz(144), MHz(148), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO},
{MHz(144), MHz(148), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO},
{MHz(430), MHz(450), TS2000_OTHER_TX_MODES, W(5), W(50), TS2000_MAINVFO},
{MHz(430), MHz(450), TS2000_AM_TX_MODES, W(5), W(12.5), TS2000_MAINVFO},
RIG_FRNG_END,
}, /* tx range */
.tuning_steps = {
{RIG_MODE_SSB | RIG_MODE_CW | RIG_MODE_RTTY, 1},
{TS2000_ALL_MODES, 10},
{TS2000_ALL_MODES, 100},
{TS2000_ALL_MODES, kHz(1)},
{TS2000_ALL_MODES, kHz(2.5)},
{TS2000_ALL_MODES, kHz(5)},
{RIG_MODE_AM | RIG_MODE_FM, kHz(6.25)},
{TS2000_ALL_MODES, kHz(10)},
{RIG_MODE_AM | RIG_MODE_FM, kHz(12.5)},
{RIG_MODE_AM | RIG_MODE_FM, kHz(12.5)},
{RIG_MODE_AM | RIG_MODE_FM, kHz(15)},
{RIG_MODE_AM | RIG_MODE_FM, kHz(20)},
{RIG_MODE_AM | RIG_MODE_FM, kHz(25)},
{RIG_MODE_AM | RIG_MODE_FM, kHz(30)},
{RIG_MODE_AM | RIG_MODE_FM, kHz(50)},
{RIG_MODE_AM | RIG_MODE_FM, kHz(100)},
{TS2000_ALL_MODES, MHz(1)},
{TS2000_ALL_MODES, 0}, /* any tuning step */
RIG_TS_END,
},
/* mode/filter list, remember: order matters! */
.filters = {
{RIG_MODE_SSB, kHz(2.2)},
{RIG_MODE_CW | RIG_MODE_CWR, Hz(200)},
{RIG_MODE_CW | RIG_MODE_CWR, Hz(50)},
{RIG_MODE_CW | RIG_MODE_CWR, Hz(1000)},
{RIG_MODE_CW | RIG_MODE_CWR, Hz(80)},
{RIG_MODE_CW | RIG_MODE_CWR, Hz(100)},
{RIG_MODE_CW | RIG_MODE_CWR, Hz(150)},
{RIG_MODE_CW | RIG_MODE_CWR, Hz(300)},
{RIG_MODE_CW | RIG_MODE_CWR, Hz(400)},
{RIG_MODE_CW | RIG_MODE_CWR, Hz(500)},
{RIG_MODE_CW | RIG_MODE_CWR, Hz(600)},
{RIG_MODE_CW | RIG_MODE_CWR, Hz(2000)},
{RIG_MODE_RTTY | RIG_MODE_RTTYR, Hz(500)},
{RIG_MODE_RTTY | RIG_MODE_RTTYR, Hz(250)},
{RIG_MODE_RTTY | RIG_MODE_RTTYR, Hz(1000)},
{RIG_MODE_RTTY | RIG_MODE_RTTYR, Hz(1500)},
{RIG_MODE_AM, kHz(6)},
{RIG_MODE_AM, kHz(2.4)},
{RIG_MODE_FM, kHz(12)},
{RIG_MODE_FM, kHz(6)},
RIG_FLT_END,
},
.str_cal = TS2000_STR_CAL,
.swr_cal = TS2000_SWR_CAL,
.ext_tokens = ts2000_ext_tokens,
.extfuncs = ts2000_ext_funcs,
.extlevels = ts2000_ext_levels,
.priv = (void *)& ts2000_priv_caps,
.rig_init = ts2000_init,
.rig_open = kenwood_open,
.rig_close = kenwood_close,
.rig_cleanup = kenwood_cleanup,
.set_freq = kenwood_set_freq,
.get_freq = kenwood_get_freq,
.set_rit = ts2000_set_rit,
.get_rit = ts2000_get_rit,
.set_xit = ts2000_set_rit,
.get_xit = ts2000_get_rit,
.set_mode = kenwood_set_mode,
.get_mode = kenwood_get_mode,
.set_vfo = kenwood_set_vfo,
.get_vfo = kenwood_get_vfo_if,
.set_split_vfo = kenwood_set_split_vfo,
.get_split_vfo = kenwood_get_split_vfo_if,
.set_ctcss_tone = kenwood_set_ctcss_tone_tn,
.get_ctcss_tone = kenwood_get_ctcss_tone,
.set_ctcss_sql = kenwood_set_ctcss_sql,
.get_ctcss_sql = kenwood_get_ctcss_sql,
.get_ptt = kenwood_get_ptt,
.set_ptt = kenwood_set_ptt,
.get_dcd = kenwood_get_dcd,
.set_func = ts2000_set_func,
.get_func = ts2000_get_func,
.set_level = ts2000_set_level,
.get_level = ts2000_get_level,
.set_ext_func = ts2000_set_ext_func,
.get_ext_func = ts2000_get_ext_func,
.set_ext_level = ts2000_set_ext_level,
.get_ext_level = ts2000_get_ext_level,
.set_ant = kenwood_set_ant,
.get_ant = kenwood_get_ant,
.send_morse = kenwood_send_morse,
.wait_morse = rig_wait_morse,
.vfo_op = kenwood_vfo_op,
.scan = kenwood_scan,
.set_mem = kenwood_set_mem,
.get_mem = kenwood_get_mem,
.get_channel = ts2000_get_channel,
.set_channel = ts2000_set_channel,
.set_trn = kenwood_set_trn,
.get_trn = kenwood_get_trn,
.set_powerstat = kenwood_set_powerstat,
.get_powerstat = kenwood_get_powerstat,
.get_info = kenwood_get_info,
.reset = kenwood_reset,
.hamlib_check_rig_caps = HAMLIB_CHECK_RIG_CAPS
};