/* * Hamlib Kenwood backend - TS2000 description * Copyright (c) 2000-2011 by Stephane Fillod * Copyright (c) 2023 by Mikael Nousiainen * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ #include #include #include #include #include "kenwood.h" #include "token.h" #include "misc.h" #include "iofunc.h" #include "cal.h" #define TS2000_ALL_MODES (RIG_MODE_AM|RIG_MODE_CW|RIG_MODE_CWR|RIG_MODE_SSB|RIG_MODE_FM|RIG_MODE_RTTY|RIG_MODE_RTTYR) #define TS2000_OTHER_TX_MODES (RIG_MODE_CW|RIG_MODE_SSB|RIG_MODE_FM|RIG_MODE_RTTY) #define TS2000_AM_TX_MODES RIG_MODE_AM #define TS2000_LEVEL_GET (RIG_LEVEL_RFPOWER|RIG_LEVEL_AF|RIG_LEVEL_RF|RIG_LEVEL_SQL|RIG_LEVEL_AGC|RIG_LEVEL_MICGAIN|RIG_LEVEL_STRENGTH|RIG_LEVEL_KEYSPD|RIG_LEVEL_CWPITCH| \ RIG_LEVEL_MONITOR_GAIN|RIG_LEVEL_NB|RIG_LEVEL_NR|RIG_LEVEL_PREAMP|RIG_LEVEL_COMP|RIG_LEVEL_ATT|RIG_LEVEL_VOXDELAY|RIG_LEVEL_VOXGAIN|RIG_LEVEL_BKIN_DLYMS| \ RIG_LEVEL_METER|RIG_LEVEL_SWR|RIG_LEVEL_COMP_METER|RIG_LEVEL_ALC|RIG_LEVEL_RFPOWER_METER|RIG_LEVEL_SLOPE_HIGH|RIG_LEVEL_SLOPE_LOW) #define TS2000_LEVEL_SET (RIG_LEVEL_RFPOWER|RIG_LEVEL_AF|RIG_LEVEL_RF|RIG_LEVEL_SQL|RIG_LEVEL_AGC|RIG_LEVEL_MICGAIN|RIG_LEVEL_KEYSPD|RIG_LEVEL_CWPITCH| \ RIG_LEVEL_MONITOR_GAIN|RIG_LEVEL_NB|RIG_LEVEL_NR|RIG_LEVEL_PREAMP|RIG_LEVEL_COMP|RIG_LEVEL_ATT|RIG_LEVEL_VOXDELAY|RIG_LEVEL_VOXGAIN|RIG_LEVEL_BKIN_DLYMS| \ RIG_LEVEL_METER|RIG_LEVEL_SLOPE_HIGH|RIG_LEVEL_SLOPE_LOW) #define TS2000_FUNC_ALL (RIG_FUNC_NB|RIG_FUNC_COMP|RIG_FUNC_VOX|RIG_FUNC_NR|RIG_FUNC_NR|RIG_FUNC_BC|RIG_FUNC_BC2|RIG_FUNC_RIT|RIG_FUNC_XIT| \ RIG_FUNC_TUNER|RIG_FUNC_MON|RIG_FUNC_FBKIN|RIG_FUNC_LOCK|RIG_FUNC_TONE|RIG_FUNC_TSQL|RIG_FUNC_ANF) #define TS2000_MAINVFO (RIG_VFO_A|RIG_VFO_B) #define TS2000_SUBVFO (RIG_VFO_C) #define TS2000_VFO_OPS (RIG_OP_UP|RIG_OP_DOWN|RIG_OP_BAND_UP|RIG_OP_BAND_DOWN|RIG_OP_CPY|RIG_OP_TUNE) #define TS2000_SCAN_OP (RIG_SCAN_VFO) #define TS2000_ANTS (RIG_ANT_1|RIG_ANT_2) #define TS2000_STR_CAL {9, {\ {0x00, -54},\ {0x03, -48},\ {0x06, -36},\ {0x09, -24},\ {0x0C, -12},\ {0x0F, 0},\ {0x14, 20},\ {0x19, 40},\ {0x1E, 60}}\ } #define TS2000_SWR_CAL { 5, \ { \ { 0, 1.0f }, \ { 4, 1.5f }, \ { 8, 2.0f }, \ { 12, 3.0f }, \ { 20, 10.0f } \ } } #define TOK_FUNC_NOISE_REDUCTION_2 TOKEN_BACKEND(102) #define TOK_LEVEL_DSP_RX_EQUALIZER TOKEN_BACKEND(104) #define TOK_LEVEL_DSP_TX_EQUALIZER TOKEN_BACKEND(105) #define TOK_LEVEL_DSP_TX_BANDWIDTH TOKEN_BACKEND(106) #define TOK_LEVEL_BEEP_VOLUME TOKEN_BACKEND(107) #define TOK_LEVEL_TX_SIDETONE_VOLUME TOKEN_BACKEND(108) /* * 38 CTCSS sub-audible tones + 1750 tone */ tone_t ts2000_ctcss_list[] = { 670, 719, 744, 770, 797, 825, 854, 885, 915, 948, 974, 1000, 1035, 1072, 1109, 1148, 1188, 1230, 1273, 1318, 1365, 1413, 1462, 1514, 1567, 1622, 1679, 1738, 1799, 1862, 1928, 2035, 2107, 2181, 2257, 2336, 2418, 2503, 17500, 0, }; /* * 103 available DCS codes */ tone_t ts2000_dcs_list[] = { 23, 25, 26, 31, 32, 36, 43, 47, 51, 53, 54, 65, 71, 72, 73, 74, 114, 115, 116, 122, 125, 131, 132, 134, 143, 145, 152, 155, 156, 162, 165, 172, 174, 205, 212, 223, 225, 226, 243, 244, 245, 246, 251, 252, 255, 261, 263, 265, 266, 271, 274, 306, 311, 315, 325, 331, 332, 343, 346, 351, 356, 364, 365, 371, 411, 412, 413, 423, 431, 432, 445, 446, 452, 454, 455, 462, 464, 465, 466, 503, 506, 516, 523, 526, 532, 546, 565, 606, 612, 624, 627, 631, 632, 654, 662, 664, 703, 712, 723, 731, 732, 734, 743, 754, 0, }; int ts2000_ext_tokens[] = { TOK_FUNC_NOISE_REDUCTION_2, TOK_FUNC_FILTER_WIDTH_DATA, TOK_LEVEL_DSP_RX_EQUALIZER, TOK_LEVEL_DSP_TX_EQUALIZER, TOK_LEVEL_DSP_TX_BANDWIDTH, TOK_LEVEL_BEEP_VOLUME, TOK_LEVEL_TX_SIDETONE_VOLUME, TOK_BACKEND_NONE, }; const struct confparams ts2000_ext_funcs[] = { { TOK_FUNC_NOISE_REDUCTION_2, "NR2", "Noise reduction 2", "Noise reduction 2", NULL, RIG_CONF_CHECKBUTTON, }, { RIG_CONF_END, NULL, } }; const struct confparams ts2000_ext_levels[] = { { TOK_LEVEL_DSP_RX_EQUALIZER, "DSP_RX_EQUALIZER", "DSP RX equalizer", "DSP RX equalizer type", NULL, RIG_CONF_COMBO, { .c = { .combostr = { "OFF", "H BOOST", "F PASS", "B BOOST", "CONV-EN", "USER", NULL } } } }, { TOK_LEVEL_DSP_TX_EQUALIZER, "DSP_TX_EQUALIZER", "DSP TX equalizer", "DSP TX equalizer type", NULL, RIG_CONF_COMBO, { .c = { .combostr = { "OFF", "H BOOST", "F PASS", "B BOOST", "CONV-EN", "USER", NULL } } } }, { TOK_LEVEL_DSP_TX_BANDWIDTH, "DSP_TX_BANDWIDTH", "DSP TX bandwidth", "DSP TX bandwidth for SSB and AM", NULL, RIG_CONF_COMBO, { .c = { .combostr = { "2.0 kHz", "2.2 kHz", "2.4 kHz", "2.6 kHz", "2.8 kHz", "3.0 kHz", NULL } } } }, { TOK_LEVEL_BEEP_VOLUME, "BEEP_VOLUME", "Beep volume", "Beep volume", NULL, RIG_CONF_NUMERIC, { .n = { .min = 0, .max = 9, .step = 1 } } }, { TOK_LEVEL_TX_SIDETONE_VOLUME, "TX_SIDETONE_VOLUME", "TX sidetone volume", "TX sidetone volume", NULL, RIG_CONF_NUMERIC, { .n = { .min = 0, .max = 9, .step = 1 } } }, { RIG_CONF_END, NULL, } }; static struct kenwood_filter_width ts2000_filter_width[] = { { RIG_MODE_CW | RIG_MODE_CWR, 50, 50 }, { RIG_MODE_CW | RIG_MODE_CWR, 80, 80 }, { RIG_MODE_CW | RIG_MODE_CWR, 100, 100 }, { RIG_MODE_CW | RIG_MODE_CWR, 150, 150 }, { RIG_MODE_CW | RIG_MODE_CWR, 200, 200 }, { RIG_MODE_CW | RIG_MODE_CWR, 300, 300 }, { RIG_MODE_CW | RIG_MODE_CWR, 400, 400 }, { RIG_MODE_CW | RIG_MODE_CWR, 500, 500 }, { RIG_MODE_CW | RIG_MODE_CWR, 600, 600 }, { RIG_MODE_CW | RIG_MODE_CWR, 1000, 1000 }, { RIG_MODE_CW | RIG_MODE_CWR, 2000, 2000 }, { RIG_MODE_RTTY | RIG_MODE_RTTYR, 250, 250 }, { RIG_MODE_RTTY | RIG_MODE_RTTYR, 500, 500 }, { RIG_MODE_RTTY | RIG_MODE_RTTYR, 1000, 1000 }, { RIG_MODE_RTTY | RIG_MODE_RTTYR, 1500, 1500 }, { RIG_MODE_SSB, 0, 2400 }, { RIG_MODE_SSB, 1, 500 }, // NAR1 optional filter { RIG_MODE_SSB, 2, 270 }, // NAR2 optional filter { RIG_MODE_FM, 0, 6000 }, { RIG_MODE_FM, 1, 12000 }, { RIG_MODE_AM, 0, 2400 }, { RIG_MODE_AM, 1, 6000 }, // NAR1 optional filter (?) { RIG_MODE_NONE, -1, -1 }, }; static struct kenwood_slope_filter ts2000_slope_filter_high[] = { { RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 0, 1400 }, { RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 1, 1600 }, { RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 2, 1800 }, { RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 3, 2000 }, { RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 4, 2200 }, { RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 5, 2400 }, { RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 6, 2600 }, { RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 7, 2800 }, { RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 8, 3000 }, { RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 9, 3400 }, { RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 10, 4000 }, { RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 11, 5000 }, { RIG_MODE_AM, 0, 0, 2500 }, { RIG_MODE_AM, 0, 1, 3000 }, { RIG_MODE_AM, 0, 2, 4000 }, { RIG_MODE_AM, 0, 3, 5000 }, { RIG_MODE_SSB | RIG_MODE_RTTY | RIG_MODE_RTTYR | RIG_MODE_FM | RIG_MODE_AM, 1, 0, 170 }, { RIG_MODE_SSB | RIG_MODE_RTTY | RIG_MODE_RTTYR | RIG_MODE_FM | RIG_MODE_AM, 1, 1, 1930 }, { RIG_MODE_SSB | RIG_MODE_RTTY | RIG_MODE_RTTYR | RIG_MODE_FM | RIG_MODE_AM, 1, 2, 2160 }, { RIG_MODE_NONE, 0, -1, -1 }, }; static struct kenwood_slope_filter ts2000_slope_filter_low[] = { { RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 0, 0 }, { RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 1, 50 }, { RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 2, 100 }, { RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 3, 200 }, { RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 4, 300 }, { RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 5, 400 }, { RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 6, 500 }, { RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 7, 600 }, { RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 8, 700 }, { RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 9, 800 }, { RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 0, 10, 900 }, { RIG_MODE_SSB | RIG_MODE_FM | RIG_MODE_RTTY | RIG_MODE_RTTYR, 10, 1, 1000 }, { RIG_MODE_AM, 0, 0, 0 }, { RIG_MODE_AM, 0, 1, 100 }, { RIG_MODE_AM, 0, 2, 200 }, { RIG_MODE_AM, 0, 3, 500 }, { RIG_MODE_SSB | RIG_MODE_RTTY | RIG_MODE_RTTYR | RIG_MODE_FM | RIG_MODE_AM, 1, 0, 2500 }, { RIG_MODE_SSB | RIG_MODE_RTTY | RIG_MODE_RTTYR | RIG_MODE_FM | RIG_MODE_AM, 1, 1, 1000 }, { RIG_MODE_NONE, 0, -1, -1 }, }; static struct kenwood_priv_caps ts2000_priv_caps = { .cmdtrm = EOM_KEN, .filter_width = ts2000_filter_width, .slope_filter_high = ts2000_slope_filter_high, .slope_filter_low = ts2000_slope_filter_low, }; /* memory capabilities */ #define TS2000_MEM_CAP { \ .freq = 1, \ .mode = 1, \ .tx_freq=1, \ .tx_mode=1, \ .split=1, \ .rptr_shift=1, \ .rptr_offs=1, \ .funcs=RIG_FUNC_REV|RIG_FUNC_TONE|RIG_FUNC_TSQL,\ .tuning_step=1, \ .ctcss_tone=1, \ .ctcss_sql=1, \ .dcs_code=1, \ .dcs_sql=1, \ .scan_group=1, \ .flags=1, \ .channel_desc=1 \ } /* * Function definitions below */ int ts2000_init(RIG *rig) { struct kenwood_priv_data *priv; int retval; ENTERFUNC; retval = kenwood_init(rig); if (retval != RIG_OK) { return retval; } priv = (struct kenwood_priv_data *) rig->state.priv; priv->ag_format = 3; priv->micgain_min = 0; priv->micgain_max = 100; RETURNFUNC(RIG_OK); } static int ts2000_set_ex_menu(RIG *rig, int number, int value_len, int value) { char buf[20]; ENTERFUNC; SNPRINTF(buf, sizeof(buf), "EX%03d0000%0*d", number, value_len, value); RETURNFUNC(kenwood_transaction(rig, buf, NULL, 0)); } static int ts2000_get_ex_menu(RIG *rig, int number, int value_len, int *value) { int retval; char buf[20]; char ackbuf[20]; rig_debug(RIG_DEBUG_TRACE, "%s called\n", __func__); SNPRINTF(buf, sizeof(buf), "EX%03d0000", number); retval = kenwood_safe_transaction(rig, buf, ackbuf, sizeof(ackbuf), 9 + value_len); if (retval != RIG_OK) { RETURNFUNC2(retval); } sscanf(ackbuf + 9, "%d", value); RETURNFUNC2(RIG_OK); } static int ts2000_set_func(RIG *rig, vfo_t vfo, setting_t func, int status) { char buf[20]; rig_debug(RIG_DEBUG_TRACE, "%s called\n", __func__); switch (func) { case RIG_FUNC_MON: SNPRINTF(buf, sizeof(buf), "ML00%c", (status == 0) ? '0' : '1'); RETURNFUNC(kenwood_transaction(rig, buf, NULL, 0)); case RIG_FUNC_LOCK: SNPRINTF(buf, sizeof(buf), "LK%c%c", (status == 0) ? '0' : '1', (status == 0) ? '0' : '1'); RETURNFUNC(kenwood_transaction(rig, buf, NULL, 0)); default: return kenwood_set_func(rig, vfo, func, status); } } static int ts2000_get_func(RIG *rig, vfo_t vfo, setting_t func, int *status) { char buf[20]; int retval; ENTERFUNC; switch (func) { case RIG_FUNC_MON: { int raw_value; retval = kenwood_safe_transaction(rig, "ML", buf, sizeof(buf), 5); if (retval != RIG_OK) { RETURNFUNC(retval); } sscanf(buf, "ML%d", &raw_value); *status = (raw_value > 0); break; } case RIG_FUNC_LOCK: retval = kenwood_safe_transaction(rig, "LK", buf, sizeof(buf), 4); if (retval != RIG_OK) { RETURNFUNC(retval); } *status = buf[2] != '0' || buf[3] != '0'; break; default: return kenwood_get_func(rig, vfo, func, status); } RETURNFUNC(RIG_OK); } /* * WARNING: The commands differ slightly from the general versions in kenwood.c * e.g.: "SQ"=>"SQ0" , "AG"=>"AG0" */ static int ts2000_set_level(RIG *rig, vfo_t vfo, setting_t level, value_t val) { char levelbuf[16]; int kenwood_val; char vfo_num = (vfo == RIG_VFO_C) ? '1' : '0'; rig_debug(RIG_DEBUG_TRACE, "%s called\n", __func__); switch (level) { case RIG_LEVEL_RF: kenwood_val = val.f * 255; SNPRINTF(levelbuf, sizeof(levelbuf), "RG%03d", kenwood_val); break; case RIG_LEVEL_AF: return kenwood_set_level(rig, vfo, level, val); case RIG_LEVEL_SQL: kenwood_val = val.f * 255; SNPRINTF(levelbuf, sizeof(levelbuf), "SQ%c%03d", vfo_num, kenwood_val); break; case RIG_LEVEL_AGC: /* Possible values for TS-2000 are 0(=off)-020(=slow) */ switch (val.i) { case RIG_AGC_OFF: kenwood_val = 0; break; case RIG_AGC_SUPERFAST: kenwood_val = 1; break; case RIG_AGC_FAST: kenwood_val = 5; break; case RIG_AGC_MEDIUM: kenwood_val = 10; break; case RIG_AGC_SLOW: kenwood_val = 20; break; default: rig_debug(RIG_DEBUG_ERR, "%s: unsupported agc value", __func__); return -RIG_EINVAL; } SNPRINTF(levelbuf, sizeof(levelbuf), "GT%03d", kenwood_val); break; case RIG_LEVEL_MONITOR_GAIN: kenwood_val = val.f * 9.0; SNPRINTF(levelbuf, sizeof(levelbuf), "ML%03d", kenwood_val); break; case RIG_LEVEL_NB: kenwood_val = val.f * 10.0; SNPRINTF(levelbuf, sizeof(levelbuf), "NL%03d", kenwood_val); break; case RIG_LEVEL_NR: kenwood_val = val.f * 9.0; SNPRINTF(levelbuf, sizeof(levelbuf), "RL%02d", kenwood_val); break; case RIG_LEVEL_PREAMP: if (val.i != 12 && val.i != 0) { RETURNFUNC(-RIG_EINVAL); } SNPRINTF(levelbuf, sizeof(levelbuf), "PA%c", (val.i == 12) ? '1' : '0'); break; case RIG_LEVEL_ATT: if (val.i != 12 && val.i != 0) { RETURNFUNC(-RIG_EINVAL); } SNPRINTF(levelbuf, sizeof(levelbuf), "RA%02d", (val.i == 12) ? 1 : 0); break; case RIG_LEVEL_METER: switch (val.i) { case RIG_METER_SWR: kenwood_val = 1; break; case RIG_METER_COMP: kenwood_val = 2; break; case RIG_METER_ALC: kenwood_val = 3; break; default: RETURNFUNC(-RIG_EINVAL); } SNPRINTF(levelbuf, sizeof(levelbuf), "RM%d", kenwood_val); break; case RIG_LEVEL_CWPITCH: if (val.i > 1000 || val.i < 400) { RETURNFUNC(-RIG_EINVAL); } RETURNFUNC(ts2000_set_ex_menu(rig, 31, 2, (val.i - 400) / 50)); default: return kenwood_set_level(rig, vfo, level, val); } return kenwood_transaction(rig, levelbuf, NULL, 0); } // TS-2000 can only read one meter at a time and the user must select // the meter using RIG_LEVEL_METER. This function returns the meter value if // the selected meter matches the expected meter. static int ts2000_read_meter(RIG *rig, int expected_meter, int *value) { int retval; char cmdbuf[8]; struct rig_state *rs = &rig->state; char ackbuf[32]; int expected_len = 8; int read_meter; int read_value; ENTERFUNC; SNPRINTF(cmdbuf, sizeof(cmdbuf), "RM;"); retval = write_block(&rs->rigport, (unsigned char *) cmdbuf, strlen(cmdbuf)); rig_debug(RIG_DEBUG_TRACE, "%s: write_block retval=%d\n", __func__, retval); if (retval != RIG_OK) { RETURNFUNC(retval); } // TS-2000 returns values for a single meter at the same time, for example: RM10000; retval = read_string(&rs->rigport, (unsigned char *) ackbuf, expected_len + 1, NULL, 0, 0, 1); rig_debug(RIG_DEBUG_TRACE, "%s: read_string retval=%d\n", __func__, retval); if (retval < 0) { rig_debug(RIG_DEBUG_ERR, "%s: failed to read rig response\n", __func__); RETURNFUNC(retval); } if (retval != expected_len) { rig_debug(RIG_DEBUG_ERR, "%s: expected %d bytes, got %d in '%s'\n", __func__, expected_len, retval, ackbuf); RETURNFUNC(-RIG_EPROTO); } retval = sscanf(ackbuf, "RM%1d%d;", &read_meter, &read_value); if (retval != 2) { rig_debug(RIG_DEBUG_ERR, "%s: expected 2 values to parse for meters, got %d in '%s'\n", __func__, retval, ackbuf); RETURNFUNC(-RIG_EPROTO); } if (read_meter == expected_meter) { *value = read_value; } else { *value = 0; } RETURNFUNC(RIG_OK); } static int ts2000_get_level(RIG *rig, vfo_t vfo, setting_t level, value_t *val) { char cmdbuf[8]; char ackbuf[50]; size_t ack_len, ack_len_expected; int levelint; int retval; char vfo_num = (vfo == RIG_VFO_C) ? '1' : '0'; ENTERFUNC; switch (level) { case RIG_LEVEL_AF: return kenwood_get_level(rig, vfo, level, val); case RIG_LEVEL_RF: retval = kenwood_transaction(rig, "RG", ackbuf, sizeof(ackbuf)); if (RIG_OK != retval) { return retval; } ack_len = strlen(ackbuf); if (5 != ack_len) { return -RIG_EPROTO; } if (1 != sscanf(&ackbuf[2], "%d", &levelint)) { return -RIG_EPROTO; } val->f = levelint / (float) 255; return RIG_OK; case RIG_LEVEL_SQL: SNPRINTF(cmdbuf, sizeof(cmdbuf), "SQ%c", vfo_num); retval = kenwood_transaction(rig, cmdbuf, ackbuf, sizeof(ackbuf)); ack_len_expected = 6; if (retval != RIG_OK) { return retval; } ack_len = strlen(ackbuf); if (ack_len != ack_len_expected) { return -RIG_EPROTO; } if (sscanf(&ackbuf[ack_len_expected - 3], "%d", &levelint) != 1) { return -RIG_EPROTO; } val->f = (float) levelint / 255.f; return RIG_OK; case RIG_LEVEL_AGC: retval = kenwood_transaction(rig, "GT", ackbuf, sizeof(ackbuf)); ack_len_expected = 5; if (RIG_OK != retval) { return retval; } ack_len = strlen(ackbuf); if (ack_len != ack_len_expected) { return -RIG_EPROTO; } if (1 != sscanf(&ackbuf[ack_len_expected - 3], "%d", &levelint)) { return -RIG_EPROTO; } if (levelint == 0) { val->i = RIG_AGC_OFF; } else if (levelint <= 1) { val->i = RIG_AGC_SUPERFAST; } else if (levelint <= 5) { val->i = RIG_AGC_FAST; } else if (levelint <= 10) { val->i = RIG_AGC_MEDIUM; } else { val->i = RIG_AGC_SLOW; } return RIG_OK; case RIG_LEVEL_STRENGTH: if (rig->state.cache.ptt != RIG_PTT_OFF) { val->i = -9 * 6; break; } return kenwood_get_level(rig, vfo, level, val); case RIG_LEVEL_MONITOR_GAIN: { int raw_value; retval = kenwood_safe_transaction(rig, "ML", ackbuf, sizeof(ackbuf), 5); if (retval != RIG_OK) { RETURNFUNC(retval); } sscanf(ackbuf, "ML%d", &raw_value); val->f = (float) raw_value / 9.0f; break; } case RIG_LEVEL_NB: { int raw_value; retval = kenwood_safe_transaction(rig, "NL", ackbuf, sizeof(ackbuf), 5); if (retval != RIG_OK) { RETURNFUNC(retval); } sscanf(ackbuf, "NL%d", &raw_value); val->f = (float) raw_value / 10.0f; break; } case RIG_LEVEL_NR: { int raw_value; retval = kenwood_safe_transaction(rig, "RL", ackbuf, sizeof(ackbuf), 4); if (retval != RIG_OK) { RETURNFUNC(retval); } sscanf(ackbuf, "RL%d", &raw_value); val->f = (float) raw_value / 9.0f; break; } case RIG_LEVEL_PREAMP: retval = kenwood_safe_transaction(rig, "PA", ackbuf, sizeof(ackbuf), 4); if (retval != RIG_OK) { RETURNFUNC(retval); } val->i = ackbuf[2] == '1' ? 12 : 0; break; case RIG_LEVEL_ATT: retval = kenwood_safe_transaction(rig, "RA", ackbuf, sizeof(ackbuf), 6); if (retval != RIG_OK) { RETURNFUNC(retval); } val->i = ackbuf[3] == '1' ? 12 : 0; break; case RIG_LEVEL_METER: { int raw_value; // TODO: Read all meters at the same time: RM10000;RM20000;RM30000; retval = kenwood_safe_transaction(rig, "RM", ackbuf, sizeof(ackbuf), 7); if (retval != RIG_OK) { RETURNFUNC(retval); } sscanf(ackbuf, "RM%1d", &raw_value); switch (raw_value) { case 1: val->i = RIG_METER_SWR; break; case 2: val->i = RIG_METER_COMP; break; case 3: val->i = RIG_METER_ALC; break; default: val->i = RIG_METER_NONE; } break; } case RIG_LEVEL_SWR: case RIG_LEVEL_COMP_METER: case RIG_LEVEL_ALC: { int meter; int swr; int comp; int *value; int alc; switch (level) { case RIG_LEVEL_SWR: meter = 1; value = &swr; break; case RIG_LEVEL_COMP_METER: meter = 2; value = ∁ break; case RIG_LEVEL_ALC: meter = 3; value = &alc; break; default: RETURNFUNC(-RIG_EINVAL); } retval = ts2000_read_meter(rig, meter, value); if (retval != RIG_OK) { RETURNFUNC(retval); } switch (level) { case RIG_LEVEL_SWR: if (rig->caps->swr_cal.size) { val->f = rig_raw2val_float(swr, &rig->caps->swr_cal); } else { val->f = (float) swr / 2.0f; } break; case RIG_LEVEL_COMP_METER: val->f = (float) comp; // Maximum value is 20dB break; case RIG_LEVEL_ALC: // Maximum value is 20, so have the max at 5 just to be on the range where other rigs report ALC val->f = (float) alc / 4.0f; break; default: return -RIG_ENAVAIL; } break; } case RIG_LEVEL_RFPOWER_METER: { int raw_value; char read_vfo_num; if (rig->state.cache.ptt == RIG_PTT_OFF) { val->f = 0; break; } SNPRINTF(cmdbuf, sizeof(cmdbuf), "SM%c", vfo_num); retval = kenwood_safe_transaction(rig, cmdbuf, ackbuf, sizeof(ackbuf), 7); if (retval != RIG_OK) { RETURNFUNC(retval); } sscanf(ackbuf, "SM%c%d", &read_vfo_num, &raw_value); if (vfo_num == '1') { val->f = (float) raw_value / 15.0f; } else { val->f = (float) raw_value / 30.0f; } break; } case RIG_LEVEL_CWPITCH: { int raw_value; retval = ts2000_get_ex_menu(rig, 31, 2, &raw_value); if (retval != RIG_OK) { RETURNFUNC(retval); } val->i = 400 + raw_value * 50; break; } default: return kenwood_get_level(rig, vfo, level, val); } RETURNFUNC(RIG_OK); } static int ts2000_set_rit(RIG *rig, vfo_t vfo, shortfreq_t rit) { char buf[20]; int retval; int rit_enabled; int xit_enabled; ENTERFUNC; if (rit < -19999 || rit > 19999) { RETURNFUNC(-RIG_EINVAL); } // RC clear command cannot be executed if RIT/XIT is not enabled retval = kenwood_get_func(rig, vfo, RIG_FUNC_RIT, &rit_enabled); if (retval != RIG_OK) { RETURNFUNC(retval); } if (!rit_enabled) { retval = kenwood_get_func(rig, vfo, RIG_FUNC_XIT, &xit_enabled); if (retval != RIG_OK) { RETURNFUNC(retval); } } if (!rit_enabled && !xit_enabled) { retval = kenwood_set_func(rig, vfo, RIG_FUNC_RIT, 1); if (retval != RIG_OK) { RETURNFUNC(retval); } } retval = kenwood_transaction(rig, "RC", NULL, 0); if (retval != RIG_OK) { RETURNFUNC(retval); } if (!rit_enabled && !xit_enabled) { retval = kenwood_set_func(rig, vfo, RIG_FUNC_RIT, 0); if (retval != RIG_OK) { RETURNFUNC(retval); } } if (rit == 0) { RETURNFUNC(RIG_OK); } SNPRINTF(buf, sizeof(buf), "R%c%05d", (rit > 0) ? 'U' : 'D', abs((int) rit)); retval = kenwood_transaction(rig, buf, NULL, 0); RETURNFUNC(retval); } static int ts2000_get_rit(RIG *rig, vfo_t vfo, shortfreq_t *rit) { int retval; char buf[7]; struct kenwood_priv_data *priv = rig->state.priv; ENTERFUNC; if (!rit) { RETURNFUNC(-RIG_EINVAL); } retval = kenwood_get_if(rig); if (retval != RIG_OK) { RETURNFUNC(retval); } memcpy(buf, &priv->info[18], 5); buf[6] = '\0'; *rit = atoi(buf); RETURNFUNC(RIG_OK); } static int ts2000_set_ext_func(RIG *rig, vfo_t vfo, token_t token, int status) { char cmdbuf[20]; int retval; ENTERFUNC; switch (token) { case TOK_FUNC_NOISE_REDUCTION_2: if (status < 0 || status > 1) { RETURNFUNC(-RIG_EINVAL); } SNPRINTF(cmdbuf, sizeof(cmdbuf), "NR%d", status ? 2 : 0); retval = kenwood_transaction(rig, cmdbuf, NULL, 0); break; default: RETURNFUNC(-RIG_EINVAL); } RETURNFUNC(retval); } static int ts2000_get_ext_func(RIG *rig, vfo_t vfo, token_t token, int *status) { char ackbuf[20]; int retval; ENTERFUNC; switch (token) { case TOK_FUNC_NOISE_REDUCTION_2: { int value; retval = kenwood_safe_transaction(rig, "NR", ackbuf, sizeof(ackbuf), 3); if (retval != RIG_OK) { RETURNFUNC(retval); } sscanf(ackbuf, "NR%d", &value); *status = (value == 2) ? 1 : 0; break; } default: RETURNFUNC(-RIG_EINVAL); } RETURNFUNC(retval); } static int ts2000_set_ext_level(RIG *rig, vfo_t vfo, token_t token, value_t val) { int retval; ENTERFUNC; switch (token) { case TOK_LEVEL_DSP_RX_EQUALIZER: if (val.i < 0 || val.i > 5) { RETURNFUNC(-RIG_EINVAL); } retval = ts2000_set_ex_menu(rig, 20, 1, val.i); break; case TOK_LEVEL_DSP_TX_EQUALIZER: if (val.i < 0 || val.i > 5) { RETURNFUNC(-RIG_EINVAL); } retval = ts2000_set_ex_menu(rig, 21, 1, val.i); break; case TOK_LEVEL_DSP_TX_BANDWIDTH: if (val.i < 0 || val.i > 5) { RETURNFUNC(-RIG_EINVAL); } retval = ts2000_set_ex_menu(rig, 22, 1, val.i); break; case TOK_LEVEL_BEEP_VOLUME: if (val.f < 0 || val.f > 9) { RETURNFUNC(-RIG_EINVAL); } retval = ts2000_set_ex_menu(rig, 12, 1, (int) val.f); break; case TOK_LEVEL_TX_SIDETONE_VOLUME: if (val.f < 0 || val.f > 9) { RETURNFUNC(-RIG_EINVAL); } retval = ts2000_set_ex_menu(rig, 13, 1, (int) val.f); break; default: RETURNFUNC(-RIG_EINVAL); } RETURNFUNC(retval); } static int ts2000_get_ext_level(RIG *rig, vfo_t vfo, token_t token, value_t *val) { int retval; int value; ENTERFUNC; switch (token) { case TOK_LEVEL_DSP_RX_EQUALIZER: retval = ts2000_get_ex_menu(rig, 20, 1, &value); val->i = value; break; case TOK_LEVEL_DSP_TX_EQUALIZER: retval = ts2000_get_ex_menu(rig, 21, 1, &value); val->i = value; break; case TOK_LEVEL_DSP_TX_BANDWIDTH: retval = ts2000_get_ex_menu(rig, 22, 1, &value); val->i = value; break; case TOK_LEVEL_BEEP_VOLUME: retval = ts2000_get_ex_menu(rig, 12, 1, &value); val->f = value; break; case TOK_LEVEL_TX_SIDETONE_VOLUME: retval = ts2000_get_ex_menu(rig, 13, 1, &value); val->f = value; break; default: RETURNFUNC(-RIG_EINVAL); } RETURNFUNC(retval); } /* * ts2000_get_channel * Read command format: M|R|P1|P2|P3|P3|;| * P1: 0 - RX frequency, 1 - TX frequency Memory channel 290 ~ 299: P1=0 (start frequency), P1=1 (end frequency) P2 - bank number allowed values: , 0, 1 or 2 P3 - channel number 00-99 Returned value: M | R |P1 |P2 |P3 |P3 |P4 |P4 |P4 |P4 | P4 |P4 |P4 |P4 |P4 |P4 |P4 |P5 |P6 |P7 | P8 |P8 |P9 |P9 |P10|P10|P10|P11|P12|P13| P13|P13|P13|P13|P13|P13|P13|P13|P14|P14| P15|P16|P16|P16|P16|P16|P16|P16|P16| ; | P1 - P3 described above P4: Frequency in Hz (11-digit). P5: Mode. 1: LSB, 2: USB, 3: CW, 4: FM, 5: AM, 6: FSK, 7: CR-R, 8: Reserved, 9: FSK-R P6: Lockout status. 0: Lockout OFF, 1: Lockout ON. P7: 0: OFF, 1: TONE, 2: CTCSS, 3: DCS. P8: Tone Number. Allowed values 01 (67Hz) - 38 (250.3Hz) P9: CTCSS tone number. Allowed values 01 (67Hz) - 38 (250.3Hz) P10: DCS code. Allowed values 000 (023 DCS code) to 103 (754 DCS code). P11: REVERSE status. P12: SHIFT status. 0: Simplex, 1: +, 2: –, 3: = (All E-types) P13: Offset frequency in Hz (9-digit). Allowed values 000000000 - 059950000 in steps of 50000. Unused digits must be 0. P14: Step size. Allowed values: for SSB, CW, FSK mode: 00 - 03 00: 1 kHz, 01: 2.5 kHz, 02: 5 kHz, 03: 10 kHz for AM, FM mode: 00 - 09 00: 5 kHz, 01: 6.25 kHz, 02: 10 kHz, 03: 12.5 kHz, 04: 15 kHz, 05: 20 kHz, 06: 25 kHz, 07: 30 kHz, 08: 50 kHz, 09: 100 kHz P15: Memory Group number (0 ~ 9). P16: Memory name. A maximum of 8 characters. */ int ts2000_get_channel(RIG *rig, vfo_t vfo, channel_t *chan, int read_only) { int err; int tmp; size_t length; char buf[52]; char cmd[8]; struct kenwood_priv_caps *caps = kenwood_caps(rig); rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__); if (!chan || chan->vfo != RIG_VFO_MEM) { return -RIG_EINVAL; } /* put channel num in the command string */ SNPRINTF(cmd, sizeof(cmd), "MR0%03d;", chan->channel_num); err = kenwood_transaction(rig, cmd, buf, sizeof(buf)); if (err != RIG_OK) { return err; } length = strlen(buf); memset(chan, 0x00, sizeof(channel_t)); chan->vfo = RIG_VFO_MEM; /* parse from right to left */ /* XXX based on the available documentation, there is no command * to read out the filters of a given memory channel. The rig, however, * stores this information. */ /* First check if a name is assigned. Name is returned at positions 41-48 (counting from 0) */ if (length > 41) { // rig_debug(RIG_DEBUG_VERBOSE, "Copying channel description: %s\n", &buf[ 41 ] ); strcpy(chan->channel_desc, &buf[ 41 ]); } /* Memory group no */ chan->scan_group = buf[ 40 ] - '0'; /* Fields 38-39 contain tuning step as a number 00 - 09. Tuning step depends on this number and the mode, just save it for now */ buf[ 40 ] = '\0'; tmp = atoi(&buf[ 38]); /* Offset frequency */ buf[ 38 ] = '\0'; chan->rptr_offs = atoi(&buf[ 29 ]); /* Shift type WARNING: '=' shift type not programmed */ if (buf[ 28 ] == '1') { chan->rptr_shift = RIG_RPT_SHIFT_PLUS; } else { if (buf[ 28 ] == '2') { chan->rptr_shift = RIG_RPT_SHIFT_MINUS; } else { chan->rptr_shift = RIG_RPT_SHIFT_NONE; } } /* Reverse status */ if (buf[27] == '1') { chan->funcs |= RIG_FUNC_REV; } /* Check for tone, CTCSS and DCS */ /* DCS code first */ if (buf[ 19 ] == '3') { if (rig->caps->dcs_list) { buf[ 27 ] = '\0'; chan->dcs_code = rig->caps->dcs_list[ atoi(&buf[ 24 ]) ]; chan->dcs_sql = chan->dcs_code; chan->ctcss_tone = 0; chan->ctcss_sql = 0; } } else { chan->dcs_code = 0; chan->dcs_sql = 0; /* CTCSS code Caution, CTCSS codes, unlike DCS codes, are numbered from 1! */ buf[ 24 ] = '\0'; if (buf[ 19 ] == '2') { chan->funcs |= RIG_FUNC_TSQL; if (rig->caps->ctcss_list) { chan->ctcss_sql = rig->caps->ctcss_list[ atoi(&buf[22]) - 1 ]; chan->ctcss_tone = 0; } } else { chan->ctcss_sql = 0; /* CTCSS tone */ if (buf[ 19 ] == '1') { chan->funcs |= RIG_FUNC_TONE; buf[ 22 ] = '\0'; if (rig->caps->ctcss_list) { chan->ctcss_tone = rig->caps->ctcss_list[ atoi(&buf[20]) - 1 ]; } } else { chan->ctcss_tone = 0; } } } /* memory lockout */ if (buf[18] == '1') { chan->flags |= RIG_CHFLAG_SKIP; } /* mode */ chan->mode = kenwood2rmode(buf[17] - '0', caps->mode_table); /* Now we have the mode, let's finish the tuning step */ if ((chan->mode == RIG_MODE_AM) || (chan->mode == RIG_MODE_FM)) { switch (tmp) { case 0: chan->tuning_step = kHz(5); break; case 1: chan->tuning_step = kHz(6.25); break; case 2: chan->tuning_step = kHz(10); break; case 3: chan->tuning_step = kHz(12.5); break; case 4: chan->tuning_step = kHz(15); break; case 5: chan->tuning_step = kHz(20); break; case 6: chan->tuning_step = kHz(25); break; case 7: chan->tuning_step = kHz(30); break; case 8: chan->tuning_step = kHz(50); break; case 9: chan->tuning_step = kHz(100); break; default: chan->tuning_step = 0; } } else { switch (tmp) { case 0: chan->tuning_step = kHz(1); break; case 1: chan->tuning_step = kHz(2.5); break; case 2: chan->tuning_step = kHz(5); break; case 3: chan->tuning_step = kHz(10); break; default: chan->tuning_step = 0; } } /* Frequency */ buf[17] = '\0'; chan->freq = atoi(&buf[6]); if (chan->freq == RIG_FREQ_NONE) { return -RIG_ENAVAIL; } buf[6] = '\0'; chan->channel_num = atoi(&buf[3]); /* Check split freq */ cmd[2] = '1'; err = kenwood_transaction(rig, cmd, buf, sizeof(buf)); if (err != RIG_OK) { return err; } chan->tx_mode = kenwood2rmode(buf[17] - '0', caps->mode_table); buf[17] = '\0'; chan->tx_freq = atoi(&buf[6]); if (chan->freq == chan->tx_freq) { chan->tx_freq = RIG_FREQ_NONE; chan->tx_mode = RIG_MODE_NONE; chan->split = RIG_SPLIT_OFF; } else { chan->split = RIG_SPLIT_ON; } if (!read_only) { // Set rig to channel values rig_debug(RIG_DEBUG_ERR, "%s: please contact hamlib mailing list to implement this\n", __func__); rig_debug(RIG_DEBUG_ERR, "%s: need to know if rig updates when channel read or not\n", __func__); return -RIG_ENIMPL; } return RIG_OK; } int ts2000_set_channel(RIG *rig, vfo_t vfo, const channel_t *chan) { char sqltype = '0'; char buf[128]; char mode, tx_mode = 0; char shift = '0'; short dcscode = 0; short code = 0; int tstep = 0; int err; int tone = 0; struct kenwood_priv_caps *caps = kenwood_caps(rig); rig_debug(RIG_DEBUG_VERBOSE, "%s called\n", __func__); if (!chan) { return -RIG_EINVAL; } mode = rmode2kenwood(chan->mode, caps->mode_table); if (mode < 0) { rig_debug(RIG_DEBUG_ERR, "%s: unsupported mode '%s'\n", __func__, rig_strrmode(chan->mode)); return -RIG_EINVAL; } if (chan->split == RIG_SPLIT_ON) { tx_mode = rmode2kenwood(chan->tx_mode, caps->mode_table); if (tx_mode < 0) { rig_debug(RIG_DEBUG_ERR, "%s: unsupported mode '%s'\n", __func__, rig_strrmode(chan->tx_mode)); return -RIG_EINVAL; } } /* find tone */ if (chan->ctcss_tone) { for (; rig->caps->ctcss_list[tone] != 0; tone++) { if (chan->ctcss_tone == rig->caps->ctcss_list[tone]) { break; } } if (chan->ctcss_tone != rig->caps->ctcss_list[tone]) { tone = -1; } else { sqltype = '1'; } } else { tone = -1; /* -1 because we will add 1 when outputting; this is necessary as CTCSS codes are numbered from 1 */ } /* find CTCSS code */ if (chan->ctcss_sql) { for (; rig->caps->ctcss_list[code] != 0; code++) { if (chan->ctcss_sql == rig->caps->ctcss_list[code]) { break; } } if (chan->ctcss_sql != rig->caps->ctcss_list[code]) { code = -1; } else { sqltype = '2'; } } else { code = -1; } /* find DCS code */ if (chan->dcs_code) { for (; rig->caps->dcs_list[dcscode] != 0; dcscode++) { if (chan->dcs_code == rig->caps->dcs_list[dcscode]) { break; } } if (chan->dcs_code != rig->caps->dcs_list[dcscode]) { dcscode = 0; } else { sqltype = '3'; } } else { dcscode = 0; } if (chan->rptr_shift == RIG_RPT_SHIFT_PLUS) { shift = '1'; } if (chan->rptr_shift == RIG_RPT_SHIFT_MINUS) { shift = '2'; } if ((chan->mode == RIG_MODE_AM) || (chan->mode == RIG_MODE_FM)) { switch (chan->tuning_step) { case s_kHz(6.25): tstep = 1; break; case s_kHz(10): tstep = 2; break; case s_kHz(12.5): tstep = 3; break; case s_kHz(15): tstep = 4; break; case s_kHz(20): tstep = 5; break; case s_kHz(25): tstep = 6; break; case s_kHz(30): tstep = 7; break; case s_kHz(50): tstep = 8; break; case s_kHz(100): tstep = 9; break; default: tstep = 0; } } else { switch (chan->tuning_step) { case s_kHz(2.5): tstep = 1; break; case s_kHz(5): tstep = 2; break; case s_kHz(10): tstep = 3; break; default: tstep = 0; } } /* P-number 2-3 4 5 6 7 8 9 101112 13 141516 */ SNPRINTF(buf, sizeof(buf), "MW0%03d%011u%c%c%c%02d%02d%03d%c%c%09d0%c%c%s;", chan->channel_num, (unsigned) chan->freq, /* 4 - frequency */ '0' + mode, /* 5 - mode */ (chan->flags & RIG_CHFLAG_SKIP) ? '1' : '0', /* 6 - lockout status */ sqltype, /* 7 - squelch and tone type */ tone + 1, /* 8 - tone code */ code + 1, /* 9 - CTCSS code */ dcscode, /* 10 - DCS code */ (chan->funcs & RIG_FUNC_REV) ? '1' : '0', /* 11 - Reverse status */ shift, /* 12 - shift type */ (int) chan->rptr_offs, /* 13 - offset frequency */ tstep + '0', /* 14 - Step size */ chan->scan_group + '0', /* 15 - Memory group no */ chan->channel_desc /* 16 - description */ ); rig_debug(RIG_DEBUG_VERBOSE, "The command will be: %s\n", buf); err = kenwood_transaction(rig, buf, NULL, 0); if (err != RIG_OK) { return err; } if (chan->split == RIG_SPLIT_ON) { SNPRINTF(buf, sizeof(buf), "MW1%03d%011u%c%c%c%02d%02d%03d%c%c%09d0%c%c%s;\n", chan->channel_num, (unsigned) chan->tx_freq, /* 4 - frequency */ '0' + tx_mode, /* 5 - mode */ (chan->flags & RIG_CHFLAG_SKIP) ? '1' : '0', /* 6 - lockout status */ sqltype, /* 7 - squelch and tone type */ tone + 1, /* 8 - tone code */ code + 1, /* 9 - CTCSS code */ dcscode + 1, /* 10 - DCS code */ (chan->funcs & RIG_FUNC_REV) ? '1' : '0', /* 11 - Reverse status */ shift, /* 12 - shift type */ (int) chan->rptr_offs, /* 13 - offset frequency */ tstep + '0', /* 14 - Step size */ chan->scan_group + '0', /* Memory group no */ chan->channel_desc /* 16 - description */ ); rig_debug(RIG_DEBUG_VERBOSE, "Split, the command will be: %s\n", buf); err = kenwood_transaction(rig, buf, NULL, 0); } return err; } /* * TS-2000 rig capabilities */ const struct rig_caps ts2000_caps = { RIG_MODEL(RIG_MODEL_TS2000), .model_name = "TS-2000", .mfg_name = "Kenwood", .version = BACKEND_VER ".1", .copyright = "LGPL", .status = RIG_STATUS_STABLE, .rig_type = RIG_TYPE_TRANSCEIVER, .ptt_type = RIG_PTT_RIG, .dcd_type = RIG_DCD_RIG, .port_type = RIG_PORT_SERIAL, .serial_rate_min = 1200, .serial_rate_max = 57600, .serial_data_bits = 8, .serial_stop_bits = 1, .serial_parity = RIG_PARITY_NONE, .serial_handshake = RIG_HANDSHAKE_NONE, .write_delay = 0, .post_write_delay = 0, /* ms */ .timeout = 200, .retry = 3, .has_get_func = TS2000_FUNC_ALL, .has_set_func = TS2000_FUNC_ALL, .has_get_level = TS2000_LEVEL_GET, .has_set_level = TS2000_LEVEL_SET, .has_get_parm = RIG_PARM_NONE, .has_set_parm = RIG_PARM_NONE, .level_gran = { #include "level_gran_kenwood.h" [LVL_RAWSTR] = { .min = { .i = 0 }, .max = { .i = 255 } }, [LVL_VOXDELAY] = { .min = { .i = 0 }, .max = { .i = 30 }, .step = { .i = 1 } }, [LVL_KEYSPD] = {.min = {.i = 10}, .max = {.i = 60}, .step = {.i = 1}}, [LVL_CWPITCH] = {.min = {.i = 400}, .max = {.i = 1000}, .step = {.i = 50}}, [LVL_BKIN_DLYMS] = {.min = {.i = 0}, .max = {.i = 1000}, .step = {.i = 50}}, [LVL_SLOPE_LOW] = {.min = {.i = 0}, .max = {.i = 1000}, .step = {.i = 10}}, [LVL_SLOPE_HIGH] = {.min = {.i = 0}, .max = {.i = 5000}, .step = {.i = 10}}, }, .parm_gran = {}, .vfo_ops = TS2000_VFO_OPS, .scan_ops = TS2000_SCAN_OP, .ctcss_list = ts2000_ctcss_list, .dcs_list = ts2000_dcs_list, .preamp = { 12, RIG_DBLST_END, }, .attenuator = { 12, RIG_DBLST_END, }, .max_rit = kHz(20), .max_xit = kHz(20), .max_ifshift = kHz(1), .targetable_vfo = RIG_TARGETABLE_FREQ, .transceive = RIG_TRN_RIG, .agc_level_count = 5, .agc_levels = { RIG_AGC_OFF, RIG_AGC_SLOW, RIG_AGC_MEDIUM, RIG_AGC_FAST, RIG_AGC_SUPERFAST }, .bank_qty = 0, .chan_desc_sz = 7, .chan_list = { { 0, 299, RIG_MTYPE_MEM, TS2000_MEM_CAP }, RIG_CHAN_END, }, .rx_range_list1 = { {kHz(300), MHz(60), TS2000_ALL_MODES, -1, -1, TS2000_MAINVFO, TS2000_ANTS}, {MHz(144), MHz(146), TS2000_ALL_MODES, -1, -1, TS2000_MAINVFO}, {MHz(430), MHz(440), TS2000_ALL_MODES, -1, -1, TS2000_MAINVFO}, {MHz(144), MHz(146), TS2000_ALL_MODES, -1, -1, TS2000_SUBVFO}, {MHz(430), MHz(440), TS2000_ALL_MODES, -1, -1, TS2000_SUBVFO}, RIG_FRNG_END, }, /* rx range */ .tx_range_list1 = { {kHz(1830), kHz(1850), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS}, {kHz(1830), kHz(1850), TS2000_AM_TX_MODES, 2000, 25000, TS2000_MAINVFO, TS2000_ANTS}, {kHz(3500), kHz(3800), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS}, {kHz(3500), kHz(3800), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS}, {MHz(7), kHz(7100), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS}, {MHz(7), kHz(7100), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS}, {MHz(10.1), MHz(10.15), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS}, {MHz(10.1), MHz(10.15), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS}, {MHz(14), kHz(14350), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS}, {MHz(14), kHz(14350), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS}, {kHz(18068), kHz(18168), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS}, {kHz(18068), kHz(18168), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS}, {MHz(21), kHz(21450), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS}, {MHz(21), kHz(21450), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS}, {kHz(24890), kHz(24990), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS}, {kHz(24890), kHz(24990), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS}, {MHz(28), kHz(29700), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS}, {MHz(28), kHz(29700), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS}, {MHz(50), MHz(50.2), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS}, {MHz(50), MHz(50.2), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS}, {MHz(144), MHz(146), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO}, {MHz(144), MHz(146), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO}, {MHz(430), MHz(440), TS2000_OTHER_TX_MODES, W(5), W(50), TS2000_MAINVFO}, {MHz(430), MHz(440), TS2000_AM_TX_MODES, W(5), W(12.5), TS2000_MAINVFO}, RIG_FRNG_END, }, /* tx range */ .rx_range_list2 = { {kHz(300), MHz(60), TS2000_ALL_MODES, -1, -1, TS2000_MAINVFO, TS2000_ANTS}, {MHz(142), MHz(152), TS2000_ALL_MODES, -1, -1, TS2000_MAINVFO}, {MHz(420), MHz(450), TS2000_ALL_MODES, -1, -1, TS2000_MAINVFO}, {MHz(118), MHz(174), TS2000_ALL_MODES, -1, -1, TS2000_SUBVFO}, {MHz(220), MHz(512), TS2000_ALL_MODES, -1, -1, TS2000_SUBVFO}, RIG_FRNG_END, }, /* rx range */ .tx_range_list2 = { {kHz(1800), MHz(2), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS}, {kHz(1800), MHz(2), TS2000_AM_TX_MODES, 2000, 25000, TS2000_MAINVFO, TS2000_ANTS}, {kHz(3500), MHz(4), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS}, {kHz(3500), MHz(4), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS}, {MHz(7), kHz(7300), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS}, {MHz(7), kHz(7300), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS}, {MHz(10.1), MHz(10.15), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS}, {MHz(10.1), MHz(10.15), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS}, {MHz(14), kHz(14350), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS}, {MHz(14), kHz(14350), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS}, {kHz(18068), kHz(18168), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS}, {kHz(18068), kHz(18168), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS}, {MHz(21), kHz(21450), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS}, {MHz(21), kHz(21450), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS}, {kHz(24890), kHz(24990), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS}, {kHz(24890), kHz(24990), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS}, {MHz(28), kHz(29700), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS}, {MHz(28), kHz(29700), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS}, {MHz(50), MHz(54), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO, TS2000_ANTS}, {MHz(50), MHz(54), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO, TS2000_ANTS}, {MHz(144), MHz(148), TS2000_OTHER_TX_MODES, W(5), W(100), TS2000_MAINVFO}, {MHz(144), MHz(148), TS2000_AM_TX_MODES, W(5), W(25), TS2000_MAINVFO}, {MHz(430), MHz(450), TS2000_OTHER_TX_MODES, W(5), W(50), TS2000_MAINVFO}, {MHz(430), MHz(450), TS2000_AM_TX_MODES, W(5), W(12.5), TS2000_MAINVFO}, RIG_FRNG_END, }, /* tx range */ .tuning_steps = { {RIG_MODE_SSB | RIG_MODE_CW | RIG_MODE_RTTY, 1}, {TS2000_ALL_MODES, 10}, {TS2000_ALL_MODES, 100}, {TS2000_ALL_MODES, kHz(1)}, {TS2000_ALL_MODES, kHz(2.5)}, {TS2000_ALL_MODES, kHz(5)}, {RIG_MODE_AM | RIG_MODE_FM, kHz(6.25)}, {TS2000_ALL_MODES, kHz(10)}, {RIG_MODE_AM | RIG_MODE_FM, kHz(12.5)}, {RIG_MODE_AM | RIG_MODE_FM, kHz(12.5)}, {RIG_MODE_AM | RIG_MODE_FM, kHz(15)}, {RIG_MODE_AM | RIG_MODE_FM, kHz(20)}, {RIG_MODE_AM | RIG_MODE_FM, kHz(25)}, {RIG_MODE_AM | RIG_MODE_FM, kHz(30)}, {RIG_MODE_AM | RIG_MODE_FM, kHz(50)}, {RIG_MODE_AM | RIG_MODE_FM, kHz(100)}, {TS2000_ALL_MODES, MHz(1)}, {TS2000_ALL_MODES, 0}, /* any tuning step */ RIG_TS_END, }, /* mode/filter list, remember: order matters! */ .filters = { {RIG_MODE_SSB, kHz(2.2)}, {RIG_MODE_CW | RIG_MODE_CWR, Hz(200)}, {RIG_MODE_CW | RIG_MODE_CWR, Hz(50)}, {RIG_MODE_CW | RIG_MODE_CWR, Hz(1000)}, {RIG_MODE_CW | RIG_MODE_CWR, Hz(80)}, {RIG_MODE_CW | RIG_MODE_CWR, Hz(100)}, {RIG_MODE_CW | RIG_MODE_CWR, Hz(150)}, {RIG_MODE_CW | RIG_MODE_CWR, Hz(300)}, {RIG_MODE_CW | RIG_MODE_CWR, Hz(400)}, {RIG_MODE_CW | RIG_MODE_CWR, Hz(500)}, {RIG_MODE_CW | RIG_MODE_CWR, Hz(600)}, {RIG_MODE_CW | RIG_MODE_CWR, Hz(2000)}, {RIG_MODE_RTTY | RIG_MODE_RTTYR, Hz(500)}, {RIG_MODE_RTTY | RIG_MODE_RTTYR, Hz(250)}, {RIG_MODE_RTTY | RIG_MODE_RTTYR, Hz(1000)}, {RIG_MODE_RTTY | RIG_MODE_RTTYR, Hz(1500)}, {RIG_MODE_AM, kHz(6)}, {RIG_MODE_AM, kHz(2.4)}, {RIG_MODE_FM, kHz(12)}, {RIG_MODE_FM, kHz(6)}, RIG_FLT_END, }, .str_cal = TS2000_STR_CAL, .swr_cal = TS2000_SWR_CAL, .ext_tokens = ts2000_ext_tokens, .extfuncs = ts2000_ext_funcs, .extlevels = ts2000_ext_levels, .priv = (void *)& ts2000_priv_caps, .rig_init = ts2000_init, .rig_open = kenwood_open, .rig_close = kenwood_close, .rig_cleanup = kenwood_cleanup, .set_freq = kenwood_set_freq, .get_freq = kenwood_get_freq, .set_rit = ts2000_set_rit, .get_rit = ts2000_get_rit, .set_xit = ts2000_set_rit, .get_xit = ts2000_get_rit, .set_mode = kenwood_set_mode, .get_mode = kenwood_get_mode, .set_vfo = kenwood_set_vfo, .get_vfo = kenwood_get_vfo_if, .set_split_vfo = kenwood_set_split_vfo, .get_split_vfo = kenwood_get_split_vfo_if, .set_ctcss_tone = kenwood_set_ctcss_tone_tn, .get_ctcss_tone = kenwood_get_ctcss_tone, .set_ctcss_sql = kenwood_set_ctcss_sql, .get_ctcss_sql = kenwood_get_ctcss_sql, .get_ptt = kenwood_get_ptt, .set_ptt = kenwood_set_ptt, .get_dcd = kenwood_get_dcd, .set_func = ts2000_set_func, .get_func = ts2000_get_func, .set_level = ts2000_set_level, .get_level = ts2000_get_level, .set_ext_func = ts2000_set_ext_func, .get_ext_func = ts2000_get_ext_func, .set_ext_level = ts2000_set_ext_level, .get_ext_level = ts2000_get_ext_level, .set_ant = kenwood_set_ant, .get_ant = kenwood_get_ant, .send_morse = kenwood_send_morse, .wait_morse = rig_wait_morse, .vfo_op = kenwood_vfo_op, .scan = kenwood_scan, .set_mem = kenwood_set_mem, .get_mem = kenwood_get_mem, .get_channel = ts2000_get_channel, .set_channel = ts2000_set_channel, .set_trn = kenwood_set_trn, .get_trn = kenwood_get_trn, .set_powerstat = kenwood_set_powerstat, .get_powerstat = kenwood_get_powerstat, .get_info = kenwood_get_info, .reset = kenwood_reset, .hamlib_check_rig_caps = HAMLIB_CHECK_RIG_CAPS };