Hamlib/rigs/guohetec/q900.c

791 wiersze
24 KiB
C

/*
* Hamlib GUOHETEC Q900 backend - main file
* Copyright (c) 2024 by GUOHETEC
*
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include <stdint.h>
#include <stdlib.h>
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
#include "hamlib/rig.h"
#include "iofunc.h"
#include "guohetec.h"
#include "cache.h"
#include "tones.h"
#include "bandplan.h"
typedef struct q900_data_s
{
char ptt;
char freqA_mode;
char freqB_mode;
long freqA;
long freqB;
char vfo;
char NR_NB;
char RIT;
char XIT;
char filterBW;
char BW;
char vol;
char hour;
char min;
char sec;
char stateline;
char S_PO;
char SWR;
} q900_data_t;
static rmode_t q900_modes[GUOHE_MODE_TABLE_MAX] =
{
RIG_MODE_USB,
RIG_MODE_LSB,
RIG_MODE_CWR,
RIG_MODE_CW,
RIG_MODE_AM,
RIG_MODE_WFM,
RIG_MODE_FM,
RIG_MODE_PKTUSB
};
static int q900_init(RIG *rig);
static int q900_open(RIG *rig);
static int q900_cleanup(RIG *rig);
static int q900_close(RIG *rig);
static int q900_set_vfo(RIG *rig, vfo_t vfo);
static int q900_get_vfo(RIG *rig, vfo_t *vfo);
static int q900_set_freq(RIG *rig, vfo_t vfo, freq_t freq);
static int q900_get_freq(RIG *rig, vfo_t vfo, freq_t *freq);
static int q900_set_mode(RIG *rig, vfo_t vfo, rmode_t mode, pbwidth_t width);
static int q900_get_mode(RIG *rig, vfo_t vfo, rmode_t *mode, pbwidth_t *width);
static int q900_set_ptt(RIG *rig, vfo_t vfo, ptt_t ptt);
static int q900_get_ptt(RIG *rig, vfo_t vfo, ptt_t *ptt);
static int q900_get_split_vfo(RIG *rig, vfo_t vfo, split_t *split,
vfo_t *tx_vfo);
static int q900_set_split_vfo(RIG *rig, vfo_t vfo, split_t split,
vfo_t tx_vfo);
static int q900_set_powerstat(RIG *rig, powerstat_t status);
#if 0
#endif
#define Q900_ALL_RX_MODES (RIG_MODE_AM|RIG_MODE_CW|RIG_MODE_CWR|RIG_MODE_PKTFM|\
RIG_MODE_USB|RIG_MODE_LSB|RIG_MODE_RTTY|RIG_MODE_FM|RIG_MODE_PKTUSB|RIG_MODE_PKTLSB|RIG_MODE_PSK|RIG_MODE_PSKR)
#define Q900_SSB_CW_RX_MODES (RIG_MODE_CW|RIG_MODE_CWR|RIG_MODE_USB|RIG_MODE_LSB|RIG_MODE_RTTY)
#define Q900_CWN_RX_MODES (RIG_MODE_CW|RIG_MODE_CWR|RIG_MODE_RTTY)
#define Q900_AM_FM_RX_MODES (RIG_MODE_AM|RIG_MODE_FM|RIG_MODE_PKTFM)
#define Q900_OTHER_TX_MODES (RIG_MODE_CW|RIG_MODE_CWR|RIG_MODE_USB|\
RIG_MODE_LSB|RIG_MODE_RTTY|RIG_MODE_FM|RIG_MODE_PKTUSB|RIG_MODE_PKTLSB|RIG_MODE_PSK|RIG_MODE_PSKR)
#define Q900_AM_TX_MODES (RIG_MODE_AM)
#define Q900_VFO_ALL (RIG_VFO_A|RIG_VFO_B)
#define Q900_ANT_FRONT (RIG_ANT_1)
#define Q900_ANT_REAR (RIG_ANT_2)
#define Q900_ANTS (Q900_ANT_FRONT | Q900_ANT_REAR)
#define Q900_STR_CAL { 16, \
{ \
{ 0x00, -54 }, /* S0 */ \
{ 0x01, -48 }, \
{ 0x02, -42 }, \
{ 0x03, -36 }, \
{ 0x04, -30 }, \
{ 0x05, -24 }, \
{ 0x06, -18 }, \
{ 0x07, -12 }, \
{ 0x08, -6 }, \
{ 0x09, 0 }, /* S9 */ \
{ 0x0A, 10 }, /* +10 */ \
{ 0x0B, 20 }, /* +20 */ \
{ 0x0C, 30 }, /* +30 */ \
{ 0x0D, 40 }, /* +40 */ \
{ 0x0E, 50 }, /* +50 */ \
{ 0x0F, 60 } /* +60 */ \
} }
// Thanks to Olivier Schmitt sc.olivier@gmail.com for these tables
#define Q900_PWR_CAL { 9, \
{ \
{ 0x00, 0 }, \
{ 0x01, 10 }, \
{ 0x02, 14 }, \
{ 0x03, 20 }, \
{ 0x04, 34 }, \
{ 0x05, 50 }, \
{ 0x06, 66 }, \
{ 0x07, 82 }, \
{ 0x08, 100 } \
} }
#define Q900_ALC_CAL { 6, \
{ \
{ 0x00, 0 }, \
{ 0x01, 20 }, \
{ 0x02, 40 }, \
{ 0x03, 60 }, \
{ 0x04, 80 }, \
{ 0x05, 100 } \
} }
#define Q900_SWR_CAL { 2, \
{ \
{ 0, 0 }, \
{ 15, 100 } \
} }
// 有包头和CRC
struct rig_caps q900_caps =
{
RIG_MODEL(RIG_MODEL_Q900),
.model_name = "Q900",
.mfg_name = "GUOHETEC",
.version = "20250611.0",
.copyright = "LGPL",
.status = RIG_STATUS_STABLE,
.rig_type = RIG_TYPE_TRANSCEIVER,
.ptt_type = RIG_PTT_RIG,
.dcd_type = RIG_DCD_RIG,
.port_type = RIG_PORT_SERIAL,
.serial_rate_min = 115200,
.serial_rate_max = 115200,
.serial_data_bits = 8,
.serial_stop_bits = 1,
.serial_parity = RIG_PARITY_NONE,
.serial_handshake = RIG_HANDSHAKE_NONE,
.write_delay = 0,
.post_write_delay = 0,
.timeout = 200,
.retry = 2,
.has_get_func = RIG_FUNC_NONE,
.has_get_parm = RIG_PARM_NONE,
.has_set_parm = RIG_PARM_NONE,
.parm_gran = {},
.ctcss_list = common_ctcss_list,
.dcs_list = common_dcs_list, /* only 104 out of 106 supported */
.preamp = { RIG_DBLST_END, },
.attenuator = { RIG_DBLST_END, },
.max_rit = Hz(9990),
.max_xit = Hz(0),
.max_ifshift = Hz(0),
.vfo_ops = RIG_OP_TOGGLE,
.targetable_vfo = RIG_TARGETABLE_FREQ | RIG_TARGETABLE_MODE,
.transceive = RIG_TRN_OFF,
.bank_qty = 0,
.chan_desc_sz = 0,
.chan_list = { RIG_CHAN_END, },
.rx_range_list1 = {
{kHz(100), MHz(56), Q900_ALL_RX_MODES, -1, -1, Q900_VFO_ALL, Q900_ANTS},
{MHz(76), MHz(108), RIG_MODE_WFM, -1, -1, Q900_VFO_ALL, Q900_ANTS},
{MHz(118), MHz(164), Q900_ALL_RX_MODES, -1, -1, Q900_VFO_ALL, Q900_ANTS},
{MHz(420), MHz(470), Q900_ALL_RX_MODES, -1, -1, Q900_VFO_ALL, Q900_ANTS},
RIG_FRNG_END,
},
.tx_range_list1 = {
FRQ_RNG_HF(1, Q900_OTHER_TX_MODES, W(0.5), W(5), Q900_VFO_ALL, Q900_ANTS),
FRQ_RNG_HF(1, Q900_AM_TX_MODES, W(0.5), W(1.5), Q900_VFO_ALL, Q900_ANTS),
FRQ_RNG_6m(1, Q900_OTHER_TX_MODES, W(0.5), W(5), Q900_VFO_ALL, Q900_ANTS),
FRQ_RNG_6m(1, Q900_AM_TX_MODES, W(0.5), W(1.5), Q900_VFO_ALL, Q900_ANTS),
FRQ_RNG_2m(1, Q900_OTHER_TX_MODES, W(0.5), W(5), Q900_VFO_ALL, Q900_ANTS),
FRQ_RNG_2m(1, Q900_AM_TX_MODES, W(0.5), W(1.5), Q900_VFO_ALL, Q900_ANTS),
FRQ_RNG_70cm(1, Q900_OTHER_TX_MODES, W(0.5), W(5), Q900_VFO_ALL, Q900_ANTS),
FRQ_RNG_70cm(1, Q900_AM_TX_MODES, W(0.5), W(1.5), Q900_VFO_ALL, Q900_ANTS),
RIG_FRNG_END,
},
.rx_range_list2 = {
{kHz(100), MHz(56), Q900_ALL_RX_MODES, -1, -1, Q900_VFO_ALL, Q900_ANTS},
{MHz(76), MHz(108), RIG_MODE_WFM, -1, -1, Q900_VFO_ALL, Q900_ANTS},
{MHz(118), MHz(164), Q900_ALL_RX_MODES, -1, -1, Q900_VFO_ALL, Q900_ANTS},
{MHz(420), MHz(470), Q900_ALL_RX_MODES, -1, -1, Q900_VFO_ALL, Q900_ANTS},
RIG_FRNG_END,
},
.tx_range_list2 = {
FRQ_RNG_HF(2, Q900_OTHER_TX_MODES, W(0.5), W(5), Q900_VFO_ALL, Q900_ANTS),
FRQ_RNG_HF(2, Q900_AM_TX_MODES, W(0.5), W(1.5), Q900_VFO_ALL, Q900_ANTS),
/* FIXME: 60 meters in US version */
FRQ_RNG_6m(2, Q900_OTHER_TX_MODES, W(0.5), W(5), Q900_VFO_ALL, Q900_ANTS),
FRQ_RNG_6m(2, Q900_AM_TX_MODES, W(0.5), W(1.5), Q900_VFO_ALL, Q900_ANTS),
FRQ_RNG_2m(2, Q900_OTHER_TX_MODES, W(0.5), W(5), Q900_VFO_ALL, Q900_ANTS),
FRQ_RNG_2m(2, Q900_AM_TX_MODES, W(0.5), W(1.5), Q900_VFO_ALL, Q900_ANTS),
FRQ_RNG_70cm(2, Q900_OTHER_TX_MODES, W(0.5), W(5), Q900_VFO_ALL, Q900_ANTS),
FRQ_RNG_70cm(2, Q900_AM_TX_MODES, W(0.5), W(1.5), Q900_VFO_ALL, Q900_ANTS),
RIG_FRNG_END,
},
.tuning_steps = {
{Q900_SSB_CW_RX_MODES, Hz(10)},
{Q900_AM_FM_RX_MODES | RIG_MODE_WFM, Hz(100)},
RIG_TS_END,
},
.filters = {
{Q900_SSB_CW_RX_MODES, kHz(2.2)}, /* normal passband */
{Q900_CWN_RX_MODES, 500}, /* CW and RTTY narrow */
{RIG_MODE_AM, kHz(6)}, /* AM normal */
{RIG_MODE_FM | RIG_MODE_PKTFM, kHz(9)},
{RIG_MODE_WFM, kHz(15)},
RIG_FLT_END,
},
.str_cal = Q900_STR_CAL,
.swr_cal = Q900_SWR_CAL,
.alc_cal = Q900_ALC_CAL,
.rfpower_meter_cal = Q900_PWR_CAL,
.rig_init = q900_init,
.rig_cleanup = q900_cleanup,
.rig_open = q900_open,
.rig_close = q900_close,
.get_vfo = q900_get_vfo,
.set_vfo = q900_set_vfo,
.set_freq = q900_set_freq,
.get_freq = q900_get_freq,
.set_mode = q900_set_mode,
.get_mode = q900_get_mode,
.set_ptt = q900_set_ptt,
.get_ptt = q900_get_ptt,
.set_split_vfo = q900_set_split_vfo,
.get_split_vfo = q900_get_split_vfo, // TBD
.set_powerstat = q900_set_powerstat,
.hamlib_check_rig_caps = HAMLIB_CHECK_RIG_CAPS
};
/* ---------------------------------------------------------------------- */
static int q900_init(RIG *rig)
{
rig_debug(RIG_DEBUG_VERBOSE, "%s: called, version %s\n", __func__,
rig->caps->version);
q900_data_t *data = (q900_data_t *)malloc(sizeof(q900_data_t));
if (data == NULL)
{
return -RIG_ENOMEM;
}
STATE(rig)->priv = data;
return RIG_OK;
}
static int q900_cleanup(RIG *rig)
{
rig_debug(RIG_DEBUG_VERBOSE, "%s: called\n", __func__);
if (STATE(rig)->priv != NULL) {
free(STATE(rig)->priv);
STATE(rig)->priv = NULL;
}
return RIG_OK;
}
static int q900_open(RIG *rig)
{
rig_debug(RIG_DEBUG_VERBOSE, "%s: called \n", __func__);
return RIG_OK;
}
static int q900_close(RIG *rig)
{
rig_debug(RIG_DEBUG_VERBOSE, "%s: called \n", __func__);
return RIG_OK;
}
/* ---------------------------------------------------------------------- */
static int q900_send(RIG *rig, const unsigned char* buff, int len, unsigned char *reply, int rlen)
{
hamlib_port_t *rp = RIGPORT(rig);
int retry = 5;
while (retry > 0) {
rig_flush(rp);
write_block(rp, buff, len);
int r = read_block(rp, reply, rlen);
if (r > 0) {
break;
}
retry--;
hl_usleep(20 * 1000);
}
return RIG_OK;
}
static int q900_send_cmd1(RIG *rig, unsigned char cmd, unsigned char *reply)
{
hamlib_port_t *rp = RIGPORT(rig);
rig_debug(RIG_DEBUG_VERBOSE, "%s: called\n", __func__);
unsigned char buf[8] = { 0xa5, 0xa5, 0xa5, 0xa5, 0x03, 0x00, 0x00, 0x00 };
buf[5] = cmd;
unsigned int crc = CRC16Check(&buf[4], 2);
buf[6] = crc >> 8;
buf[7] = crc & 0xff;
rig_flush(rp);
write_block(rp, buf, 8);
return RIG_OK;
}
/* ---------------------------------------------------------------------- */
static int q900_get_freq(RIG *rig, vfo_t vfo, freq_t *freq)
{
unsigned char cmd[8] = {
0xA5, 0xA5, 0xA5, 0xA5,
0x03,
0x0B,
0x00, 0x00
};
uint16_t crc = CRC16Check(&cmd[4], 2);
cmd[6] = crc >> 8;
cmd[7] = crc & 0xFF;
{
unsigned char reply[40];
q900_send(rig, cmd, sizeof(cmd), reply, sizeof(reply));
// Validate response using common function
if (validate_freq_response(rig, reply, sizeof(reply), __func__) < 0) {
RETURN_CACHED_FREQ(rig, vfo, freq);
}
// Parse frequency (big-endian)
int freq_a_offset = 9; // VFOA frequency starting position
int freq_b_offset = 13; // VFOB frequency starting position
uint32_t freq_a = (reply[freq_a_offset] << 24) |
(reply[freq_a_offset+1] << 16) |
(reply[freq_a_offset+2] << 8) |
reply[freq_a_offset+3];
uint32_t freq_b = (reply[freq_b_offset] << 24) |
(reply[freq_b_offset+1] << 16) |
(reply[freq_b_offset+2] << 8) |
reply[freq_b_offset+3];
// Update cache
CACHE(rig)->freqMainA = (freq_t)freq_a;
CACHE(rig)->freqMainB = (freq_t)freq_b;
// Return requested VFO frequency
*freq = (vfo == RIG_VFO_A) ? CACHE(rig)->freqMainA : CACHE(rig)->freqMainB;
rig_debug(RIG_DEBUG_VERBOSE, "%s: Successfully got VFOA=%.0f Hz, VFOB=%.0f Hz\n",
__func__, CACHE(rig)->freqMainA, CACHE(rig)->freqMainB);
}
return RIG_OK;
}
static int q900_get_mode(RIG *rig, vfo_t vfo, rmode_t *mode, pbwidth_t *width)
{
struct rig_cache *cachep = CACHE(rig);
const q900_data_t *p = (q900_data_t *) STATE(rig)->priv;
{
unsigned char reply[255];
// Get latest status from hardware
q900_send_cmd1(rig, 0x0b, 0);
// Read and validate response using common function
if (read_rig_response(rig, reply, sizeof(reply), __func__) < 0) {
RETURN_CACHED_MODE(rig, vfo, mode, width, cachep, p);
}
// Validate mode response using common function
if (validate_mode_response(rig, reply, sizeof(reply), __func__, 5) < 0) {
RETURN_CACHED_MODE(rig, vfo, mode, width, cachep, p);
}
// Update cache
cachep->modeMainA = guohe2rmode(reply[7], q900_modes);
cachep->modeMainB = guohe2rmode(reply[8], q900_modes);
// Return requested mode
*mode = (vfo == RIG_VFO_A) ? cachep->modeMainA : cachep->modeMainB;
*width = p->filterBW;
}
return RIG_OK;
}
static int q900_get_split_vfo(RIG *rig, vfo_t vfo, split_t *split,
vfo_t *tx_vfo)
{
*split = CACHE(rig)->split;
if (*split) { *tx_vfo = RIG_VFO_B; }
else { *tx_vfo = RIG_VFO_A; }
return RIG_OK;
}
static int q900_get_vfo(RIG *rig, vfo_t *vfo)
{
{
unsigned char reply[255];
// Send status sync command to get current VFO state
q900_send_cmd1(rig, 0x0b, 0);
// Read and validate response using common function
if (read_rig_response(rig, reply, sizeof(reply), __func__) < 0) {
RETURN_CACHED_VFO(rig, vfo);
}
// Validate VFO status field index won't overflow
if (reply[4] < 13) { // Need at least 13 bytes to access reply[17]
rig_debug(RIG_DEBUG_ERR, "%s: Response too short for VFO data, using cached values\n", __func__);
RETURN_CACHED_VFO(rig, vfo);
}
// According to protocol doc, reply[17] is A/B frequency status
*vfo = (reply[17] == 1) ? RIG_VFO_B : RIG_VFO_A;
}
return RIG_OK;
}
static int q900_get_ptt(RIG *rig, vfo_t vfo, ptt_t *ptt)
{
struct rig_cache *cachep = CACHE(rig);
{
unsigned char reply[255];
q900_send_cmd1(rig, 0x0b, 0);
// Read and validate response using common function
if (read_rig_response(rig, reply, sizeof(reply), __func__) < 0) {
RETURN_CACHED_PTT(rig, ptt, cachep);
}
// Validate PTT status field index won't overflow
if (reply[4] < 2) { // Need at least 2 bytes to access reply[6]
rig_debug(RIG_DEBUG_ERR, "%s: Response too short for PTT data, using cached values\n", __func__);
RETURN_CACHED_PTT(rig, ptt, cachep);
}
// Get PTT status
cachep->ptt = reply[6];
*ptt = cachep->ptt;
}
return RIG_OK;
}
/* ---------------------------------------------------------------------- */
static int q900_read_ack(RIG *rig)
{
unsigned char dummy;
hamlib_port_t *rp = RIGPORT(rig);
rig_debug(RIG_DEBUG_VERBOSE, "%s: called\n", __func__);
if (rp->post_write_delay == 0)
{
if (read_block(rp, &dummy, 1) < 0)
{
rig_debug(RIG_DEBUG_ERR, "%s: error reading ack\n", __func__);
rig_debug(RIG_DEBUG_ERR, "%s: adjusting post_write_delay to avoid ack\n",
__func__);
rp->post_write_delay =
10; // arbitrary choice right now of max 100 cmds/sec
return RIG_OK; // let it continue without checking for ack now
}
rig_debug(RIG_DEBUG_TRACE, "%s: ack value=0x%x\n", __func__, dummy);
}
return RIG_OK;
}
/*
* private helper function to send a private command sequence.
* Must only be complete 2-byte sequences.
*/
static int q900_send_cmd2(RIG *rig, unsigned char cmd, unsigned char value,
int response)
{
unsigned char buf[64] = { 0xa5, 0xa5, 0xa5, 0xa5, 0x04, 0x00, 0x00, 0x00, 0x00 };
hamlib_port_t *rp = RIGPORT(rig);
rig_debug(RIG_DEBUG_VERBOSE, "%s: called\n", __func__);
buf[5] = cmd;
buf[6] = value;
unsigned int crc = CRC16Check(&buf[4], 3);
buf[7] = crc >> 8;
buf[8] = crc & 0xff;
rig_flush(rp);
write_block(rp, buf, 9);
if (response)
{
unsigned char reply[256];
// Use common response reading function
if (read_rig_response(rig, reply, sizeof(reply), __func__) < 0) {
return RIG_OK; // Return OK to use cached values
}
}
return q900_read_ack(rig);
}
static int q900_set_freq(RIG *rig, vfo_t vfo, freq_t freq)
{
unsigned char cmd[16] = { 0xa5, 0xa5, 0xa5, 0xa5, 11, 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
unsigned char reply[16];
hamlib_port_t *rp = RIGPORT(rig);
rig_debug(RIG_DEBUG_VERBOSE, "q900: requested freq = %"PRIfreq" Hz\n", freq);
if (vfo == RIG_VFO_B)
{
to_be(&cmd[6], CACHE(rig)->freqMainA, 4);
to_be(&cmd[10], freq, 4);
}
else
{
to_be(&cmd[6], freq, 4);
to_be(&cmd[10], CACHE(rig)->freqMainB, 4);
}
unsigned int crc = CRC16Check(&cmd[4], 10);
cmd[14] = crc >> 8;
cmd[15] = crc & 0xff;
rig_flush(rp);
write_block(rp, cmd, 16);
// Read response
int ret = read_block(rp, reply, 16);
if (ret < 0) {
rig_debug(RIG_DEBUG_ERR, "%s: Failed to read response, using cached values\n", __func__);
// Update cache with requested frequency even if response failed
if (vfo == RIG_VFO_B)
{
CACHE(rig)->freqMainB = freq;
}
else
{
CACHE(rig)->freqMainA = freq;
}
return RIG_OK;
}
// Update cache with requested frequency
if (vfo == RIG_VFO_B)
{
CACHE(rig)->freqMainB = freq;
}
else
{
CACHE(rig)->freqMainA = freq;
}
return RIG_OK;
}
static int q900_set_vfo(RIG *rig, vfo_t vfo)
{
unsigned char cmd[9] = { 0xa5, 0xa5, 0xa5, 0xa5, 0x04, 0x1b, 0x00, 0x00, 0x00 };
cmd[6] = (vfo == RIG_VFO_B) ? 1 : 0;
uint16_t crc = CRC16Check(&cmd[4], 3);
cmd[7] = crc >> 8;
cmd[8] = crc & 0xFF;
rig_flush(RIGPORT(rig));
write_block(RIGPORT(rig), cmd, sizeof(cmd));
return RIG_OK;
}
static int q900_set_mode(RIG *rig, vfo_t vfo, rmode_t mode, pbwidth_t width)
{
hamlib_port_t *rp = RIGPORT(rig);
unsigned char cmd[10] = { 0xa5, 0xa5, 0xa5, 0xa5, 5, 0x0a, 0x00, 0x00, 0x00, 0x00 };
unsigned char reply[10];
unsigned char i = rmode2guohe(mode, q900_modes);
if (vfo == RIG_VFO_B)
{
cmd[6] = rmode2guohe(CACHE(rig)->modeMainA, q900_modes);
cmd[7] = i;
}
else
{
cmd[6] = i;
cmd[7] = rmode2guohe(CACHE(rig)->modeMainB, q900_modes);
}
int crc = CRC16Check(&cmd[4], 4);
cmd[8] = crc >> 8;
cmd[9] = crc & 0xff;
rig_flush(rp);
write_block(rp, cmd, 10);
// Use common response reading function
if (read_rig_response(rig, reply, sizeof(reply), __func__) < 0) {
// Update cache with requested mode even if response failed
if (vfo == RIG_VFO_B)
{
CACHE(rig)->modeMainB = mode;
}
else
{
CACHE(rig)->modeMainA = mode;
}
return RIG_OK;
}
// Validate mode field index won't overflow
if (reply[4] < 3) { // Need at least 3 bytes to access reply[6] and reply[7]
rig_debug(RIG_DEBUG_ERR, "%s: Response too short for mode data, using cached values\n", __func__);
// Update cache with requested mode even if validation failed
if (vfo == RIG_VFO_B)
{
CACHE(rig)->modeMainB = mode;
}
else
{
CACHE(rig)->modeMainA = mode;
}
return RIG_OK;
}
// Validate mode field indices are within bounds
if (reply[6] >= GUOHE_MODE_TABLE_MAX) {
rig_debug(RIG_DEBUG_ERR, "%s: Invalid mode A index %d, using cached values\n", __func__, reply[6]);
// Update cache with requested mode even if validation failed
if (vfo == RIG_VFO_B)
{
CACHE(rig)->modeMainB = mode;
}
else
{
CACHE(rig)->modeMainA = mode;
}
return RIG_OK;
}
if (reply[7] >= GUOHE_MODE_TABLE_MAX) {
rig_debug(RIG_DEBUG_ERR, "%s: Invalid mode B index %d, using cached values\n", __func__, reply[7]);
// Update cache with requested mode even if validation failed
if (vfo == RIG_VFO_B)
{
CACHE(rig)->modeMainB = mode;
}
else
{
CACHE(rig)->modeMainA = mode;
}
return RIG_OK;
}
// Update cache with response data
CACHE(rig)->modeMainA = guohe2rmode(reply[6], q900_modes);
CACHE(rig)->modeMainB = guohe2rmode(reply[7], q900_modes);
return RIG_OK;
}
static int q900_set_ptt(RIG *rig, vfo_t vfo, ptt_t ptt)
{
unsigned char cmd[9] = {
0xa5, 0xa5, 0xa5, 0xa5,
0x04,
0x07,
(unsigned char)(ptt == RIG_PTT_ON ? 0x00 : 0x01),
0x00, 0x00
};
uint16_t crc = CRC16Check(&cmd[4], 3);
cmd[7] = crc >> 8;
cmd[8] = crc & 0xff;
unsigned char reply[9];
q900_send(rig, cmd, sizeof(cmd), reply, sizeof(reply));
// Update cache
CACHE(rig)->ptt = ptt;
return RIG_OK;
}
static int q900_set_powerstat(RIG *rig, powerstat_t status)
{
rig_debug(RIG_DEBUG_VERBOSE, "%s: called\n", __func__);
switch (status)
{
case RIG_POWER_OFF:
return q900_send_cmd2(rig, 0x0c, 0x00, 0);
case RIG_POWER_ON:
return q900_send_cmd2(rig, 0x0c, 0x01, 0);
case RIG_POWER_STANDBY:
return q900_send_cmd2(rig, 0x0c, 0x00, 0);
case RIG_POWER_OPERATE:
return q900_send_cmd2(rig, 0x0c, 0x01, 0);
case RIG_POWER_UNKNOWN:
default:
rig_debug(RIG_DEBUG_ERR, "%s: unsupported power status %d\n", __func__, status);
return RIG_OK;
}
}
/* FIXME: this function silently ignores the vfo args and just turns
split ON or OFF.
*/
static int q900_set_split_vfo(RIG *rig, vfo_t vfo, split_t split,
vfo_t tx_vfo)
{
rig_debug(RIG_DEBUG_VERBOSE, "%s: called\n", __func__);
switch (split)
{
case RIG_SPLIT_ON:
q900_send_cmd2(rig, 0x07, 0x1c, 1);
break;
case RIG_SPLIT_OFF:
q900_send_cmd2(rig, 0x07, 0x1c, 0);
break;
default:
rig_debug(RIG_DEBUG_ERR, "%s: unsupported split value %d\n", __func__, split);
break;
}
CACHE(rig)->split = split;
return RIG_OK;
}
/* ---------------------------------------------------------------------- */