/* * Hamlib GUOHETEC Q900 backend - main file * Copyright (c) 2024 by GUOHETEC * * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ #include #include #ifdef HAVE_SYS_TIME_H #include #endif #include "hamlib/rig.h" #include "iofunc.h" #include "guohetec.h" #include "cache.h" #include "tones.h" #include "bandplan.h" typedef struct q900_data_s { char ptt; char freqA_mode; char freqB_mode; long freqA; long freqB; char vfo; char NR_NB; char RIT; char XIT; char filterBW; char BW; char vol; char hour; char min; char sec; char stateline; char S_PO; char SWR; } q900_data_t; static rmode_t q900_modes[GUOHE_MODE_TABLE_MAX] = { RIG_MODE_USB, RIG_MODE_LSB, RIG_MODE_CWR, RIG_MODE_CW, RIG_MODE_AM, RIG_MODE_WFM, RIG_MODE_FM, RIG_MODE_PKTUSB }; static int q900_init(RIG *rig); static int q900_open(RIG *rig); static int q900_cleanup(RIG *rig); static int q900_close(RIG *rig); static int q900_set_vfo(RIG *rig, vfo_t vfo); static int q900_get_vfo(RIG *rig, vfo_t *vfo); static int q900_set_freq(RIG *rig, vfo_t vfo, freq_t freq); static int q900_get_freq(RIG *rig, vfo_t vfo, freq_t *freq); static int q900_set_mode(RIG *rig, vfo_t vfo, rmode_t mode, pbwidth_t width); static int q900_get_mode(RIG *rig, vfo_t vfo, rmode_t *mode, pbwidth_t *width); static int q900_set_ptt(RIG *rig, vfo_t vfo, ptt_t ptt); static int q900_get_ptt(RIG *rig, vfo_t vfo, ptt_t *ptt); static int q900_get_split_vfo(RIG *rig, vfo_t vfo, split_t *split, vfo_t *tx_vfo); static int q900_set_split_vfo(RIG *rig, vfo_t vfo, split_t split, vfo_t tx_vfo); static int q900_set_powerstat(RIG *rig, powerstat_t status); #if 0 #endif #define Q900_ALL_RX_MODES (RIG_MODE_AM|RIG_MODE_CW|RIG_MODE_CWR|RIG_MODE_PKTFM|\ RIG_MODE_USB|RIG_MODE_LSB|RIG_MODE_RTTY|RIG_MODE_FM|RIG_MODE_PKTUSB|RIG_MODE_PKTLSB|RIG_MODE_PSK|RIG_MODE_PSKR) #define Q900_SSB_CW_RX_MODES (RIG_MODE_CW|RIG_MODE_CWR|RIG_MODE_USB|RIG_MODE_LSB|RIG_MODE_RTTY) #define Q900_CWN_RX_MODES (RIG_MODE_CW|RIG_MODE_CWR|RIG_MODE_RTTY) #define Q900_AM_FM_RX_MODES (RIG_MODE_AM|RIG_MODE_FM|RIG_MODE_PKTFM) #define Q900_OTHER_TX_MODES (RIG_MODE_CW|RIG_MODE_CWR|RIG_MODE_USB|\ RIG_MODE_LSB|RIG_MODE_RTTY|RIG_MODE_FM|RIG_MODE_PKTUSB|RIG_MODE_PKTLSB|RIG_MODE_PSK|RIG_MODE_PSKR) #define Q900_AM_TX_MODES (RIG_MODE_AM) #define Q900_VFO_ALL (RIG_VFO_A|RIG_VFO_B) #define Q900_ANT_FRONT (RIG_ANT_1) #define Q900_ANT_REAR (RIG_ANT_2) #define Q900_ANTS (Q900_ANT_FRONT | Q900_ANT_REAR) #define Q900_STR_CAL { 16, \ { \ { 0x00, -54 }, /* S0 */ \ { 0x01, -48 }, \ { 0x02, -42 }, \ { 0x03, -36 }, \ { 0x04, -30 }, \ { 0x05, -24 }, \ { 0x06, -18 }, \ { 0x07, -12 }, \ { 0x08, -6 }, \ { 0x09, 0 }, /* S9 */ \ { 0x0A, 10 }, /* +10 */ \ { 0x0B, 20 }, /* +20 */ \ { 0x0C, 30 }, /* +30 */ \ { 0x0D, 40 }, /* +40 */ \ { 0x0E, 50 }, /* +50 */ \ { 0x0F, 60 } /* +60 */ \ } } // Thanks to Olivier Schmitt sc.olivier@gmail.com for these tables #define Q900_PWR_CAL { 9, \ { \ { 0x00, 0 }, \ { 0x01, 10 }, \ { 0x02, 14 }, \ { 0x03, 20 }, \ { 0x04, 34 }, \ { 0x05, 50 }, \ { 0x06, 66 }, \ { 0x07, 82 }, \ { 0x08, 100 } \ } } #define Q900_ALC_CAL { 6, \ { \ { 0x00, 0 }, \ { 0x01, 20 }, \ { 0x02, 40 }, \ { 0x03, 60 }, \ { 0x04, 80 }, \ { 0x05, 100 } \ } } #define Q900_SWR_CAL { 2, \ { \ { 0, 0 }, \ { 15, 100 } \ } } // 有包头和CRC struct rig_caps q900_caps = { RIG_MODEL(RIG_MODEL_Q900), .model_name = "Q900", .mfg_name = "GUOHETEC", .version = "20250611.0", .copyright = "LGPL", .status = RIG_STATUS_STABLE, .rig_type = RIG_TYPE_TRANSCEIVER, .ptt_type = RIG_PTT_RIG, .dcd_type = RIG_DCD_RIG, .port_type = RIG_PORT_SERIAL, .serial_rate_min = 115200, .serial_rate_max = 115200, .serial_data_bits = 8, .serial_stop_bits = 1, .serial_parity = RIG_PARITY_NONE, .serial_handshake = RIG_HANDSHAKE_NONE, .write_delay = 0, .post_write_delay = 0, .timeout = 200, .retry = 2, .has_get_func = RIG_FUNC_NONE, .has_get_parm = RIG_PARM_NONE, .has_set_parm = RIG_PARM_NONE, .parm_gran = {}, .ctcss_list = common_ctcss_list, .dcs_list = common_dcs_list, /* only 104 out of 106 supported */ .preamp = { RIG_DBLST_END, }, .attenuator = { RIG_DBLST_END, }, .max_rit = Hz(9990), .max_xit = Hz(0), .max_ifshift = Hz(0), .vfo_ops = RIG_OP_TOGGLE, .targetable_vfo = RIG_TARGETABLE_FREQ | RIG_TARGETABLE_MODE, .transceive = RIG_TRN_OFF, .bank_qty = 0, .chan_desc_sz = 0, .chan_list = { RIG_CHAN_END, }, .rx_range_list1 = { {kHz(100), MHz(56), Q900_ALL_RX_MODES, -1, -1, Q900_VFO_ALL, Q900_ANTS}, {MHz(76), MHz(108), RIG_MODE_WFM, -1, -1, Q900_VFO_ALL, Q900_ANTS}, {MHz(118), MHz(164), Q900_ALL_RX_MODES, -1, -1, Q900_VFO_ALL, Q900_ANTS}, {MHz(420), MHz(470), Q900_ALL_RX_MODES, -1, -1, Q900_VFO_ALL, Q900_ANTS}, RIG_FRNG_END, }, .tx_range_list1 = { FRQ_RNG_HF(1, Q900_OTHER_TX_MODES, W(0.5), W(5), Q900_VFO_ALL, Q900_ANTS), FRQ_RNG_HF(1, Q900_AM_TX_MODES, W(0.5), W(1.5), Q900_VFO_ALL, Q900_ANTS), FRQ_RNG_6m(1, Q900_OTHER_TX_MODES, W(0.5), W(5), Q900_VFO_ALL, Q900_ANTS), FRQ_RNG_6m(1, Q900_AM_TX_MODES, W(0.5), W(1.5), Q900_VFO_ALL, Q900_ANTS), FRQ_RNG_2m(1, Q900_OTHER_TX_MODES, W(0.5), W(5), Q900_VFO_ALL, Q900_ANTS), FRQ_RNG_2m(1, Q900_AM_TX_MODES, W(0.5), W(1.5), Q900_VFO_ALL, Q900_ANTS), FRQ_RNG_70cm(1, Q900_OTHER_TX_MODES, W(0.5), W(5), Q900_VFO_ALL, Q900_ANTS), FRQ_RNG_70cm(1, Q900_AM_TX_MODES, W(0.5), W(1.5), Q900_VFO_ALL, Q900_ANTS), RIG_FRNG_END, }, .rx_range_list2 = { {kHz(100), MHz(56), Q900_ALL_RX_MODES, -1, -1, Q900_VFO_ALL, Q900_ANTS}, {MHz(76), MHz(108), RIG_MODE_WFM, -1, -1, Q900_VFO_ALL, Q900_ANTS}, {MHz(118), MHz(164), Q900_ALL_RX_MODES, -1, -1, Q900_VFO_ALL, Q900_ANTS}, {MHz(420), MHz(470), Q900_ALL_RX_MODES, -1, -1, Q900_VFO_ALL, Q900_ANTS}, RIG_FRNG_END, }, .tx_range_list2 = { FRQ_RNG_HF(2, Q900_OTHER_TX_MODES, W(0.5), W(5), Q900_VFO_ALL, Q900_ANTS), FRQ_RNG_HF(2, Q900_AM_TX_MODES, W(0.5), W(1.5), Q900_VFO_ALL, Q900_ANTS), /* FIXME: 60 meters in US version */ FRQ_RNG_6m(2, Q900_OTHER_TX_MODES, W(0.5), W(5), Q900_VFO_ALL, Q900_ANTS), FRQ_RNG_6m(2, Q900_AM_TX_MODES, W(0.5), W(1.5), Q900_VFO_ALL, Q900_ANTS), FRQ_RNG_2m(2, Q900_OTHER_TX_MODES, W(0.5), W(5), Q900_VFO_ALL, Q900_ANTS), FRQ_RNG_2m(2, Q900_AM_TX_MODES, W(0.5), W(1.5), Q900_VFO_ALL, Q900_ANTS), FRQ_RNG_70cm(2, Q900_OTHER_TX_MODES, W(0.5), W(5), Q900_VFO_ALL, Q900_ANTS), FRQ_RNG_70cm(2, Q900_AM_TX_MODES, W(0.5), W(1.5), Q900_VFO_ALL, Q900_ANTS), RIG_FRNG_END, }, .tuning_steps = { {Q900_SSB_CW_RX_MODES, Hz(10)}, {Q900_AM_FM_RX_MODES | RIG_MODE_WFM, Hz(100)}, RIG_TS_END, }, .filters = { {Q900_SSB_CW_RX_MODES, kHz(2.2)}, /* normal passband */ {Q900_CWN_RX_MODES, 500}, /* CW and RTTY narrow */ {RIG_MODE_AM, kHz(6)}, /* AM normal */ {RIG_MODE_FM | RIG_MODE_PKTFM, kHz(9)}, {RIG_MODE_WFM, kHz(15)}, RIG_FLT_END, }, .str_cal = Q900_STR_CAL, .swr_cal = Q900_SWR_CAL, .alc_cal = Q900_ALC_CAL, .rfpower_meter_cal = Q900_PWR_CAL, .rig_init = q900_init, .rig_cleanup = q900_cleanup, .rig_open = q900_open, .rig_close = q900_close, .get_vfo = q900_get_vfo, .set_vfo = q900_set_vfo, .set_freq = q900_set_freq, .get_freq = q900_get_freq, .set_mode = q900_set_mode, .get_mode = q900_get_mode, .set_ptt = q900_set_ptt, .get_ptt = q900_get_ptt, .set_split_vfo = q900_set_split_vfo, .get_split_vfo = q900_get_split_vfo, // TBD .set_powerstat = q900_set_powerstat, .hamlib_check_rig_caps = HAMLIB_CHECK_RIG_CAPS }; /* ---------------------------------------------------------------------- */ static int q900_init(RIG *rig) { rig_debug(RIG_DEBUG_VERBOSE, "%s: called, version %s\n", __func__, rig->caps->version); q900_data_t *data = (q900_data_t *)malloc(sizeof(q900_data_t)); if (data == NULL) { return -RIG_ENOMEM; } STATE(rig)->priv = data; return RIG_OK; } static int q900_cleanup(RIG *rig) { rig_debug(RIG_DEBUG_VERBOSE, "%s: called\n", __func__); if (STATE(rig)->priv != NULL) { free(STATE(rig)->priv); STATE(rig)->priv = NULL; } return RIG_OK; } static int q900_open(RIG *rig) { rig_debug(RIG_DEBUG_VERBOSE, "%s: called \n", __func__); return RIG_OK; } static int q900_close(RIG *rig) { rig_debug(RIG_DEBUG_VERBOSE, "%s: called \n", __func__); return RIG_OK; } /* ---------------------------------------------------------------------- */ static int q900_send(RIG *rig, const unsigned char* buff, int len, unsigned char *reply, int rlen) { hamlib_port_t *rp = RIGPORT(rig); int retry = 5; while (retry > 0) { rig_flush(rp); write_block(rp, buff, len); int r = read_block(rp, reply, rlen); if (r > 0) { break; } retry--; hl_usleep(20 * 1000); } return RIG_OK; } static int q900_send_cmd1(RIG *rig, unsigned char cmd, unsigned char *reply) { hamlib_port_t *rp = RIGPORT(rig); rig_debug(RIG_DEBUG_VERBOSE, "%s: called\n", __func__); unsigned char buf[8] = { 0xa5, 0xa5, 0xa5, 0xa5, 0x03, 0x00, 0x00, 0x00 }; buf[5] = cmd; unsigned int crc = CRC16Check(&buf[4], 2); buf[6] = crc >> 8; buf[7] = crc & 0xff; rig_flush(rp); write_block(rp, buf, 8); return RIG_OK; } /* ---------------------------------------------------------------------- */ static int q900_get_freq(RIG *rig, vfo_t vfo, freq_t *freq) { unsigned char cmd[8] = { 0xA5, 0xA5, 0xA5, 0xA5, 0x03, 0x0B, 0x00, 0x00 }; uint16_t crc = CRC16Check(&cmd[4], 2); cmd[6] = crc >> 8; cmd[7] = crc & 0xFF; { unsigned char reply[40]; q900_send(rig, cmd, sizeof(cmd), reply, sizeof(reply)); // Validate response using common function if (validate_freq_response(rig, reply, sizeof(reply), __func__) < 0) { RETURN_CACHED_FREQ(rig, vfo, freq); } // Parse frequency (big-endian) int freq_a_offset = 9; // VFOA frequency starting position int freq_b_offset = 13; // VFOB frequency starting position uint32_t freq_a = (reply[freq_a_offset] << 24) | (reply[freq_a_offset+1] << 16) | (reply[freq_a_offset+2] << 8) | reply[freq_a_offset+3]; uint32_t freq_b = (reply[freq_b_offset] << 24) | (reply[freq_b_offset+1] << 16) | (reply[freq_b_offset+2] << 8) | reply[freq_b_offset+3]; // Update cache CACHE(rig)->freqMainA = (freq_t)freq_a; CACHE(rig)->freqMainB = (freq_t)freq_b; // Return requested VFO frequency *freq = (vfo == RIG_VFO_A) ? CACHE(rig)->freqMainA : CACHE(rig)->freqMainB; rig_debug(RIG_DEBUG_VERBOSE, "%s: Successfully got VFOA=%.0f Hz, VFOB=%.0f Hz\n", __func__, CACHE(rig)->freqMainA, CACHE(rig)->freqMainB); } return RIG_OK; } static int q900_get_mode(RIG *rig, vfo_t vfo, rmode_t *mode, pbwidth_t *width) { struct rig_cache *cachep = CACHE(rig); const q900_data_t *p = (q900_data_t *) STATE(rig)->priv; { unsigned char reply[255]; // Get latest status from hardware q900_send_cmd1(rig, 0x0b, 0); // Read and validate response using common function if (read_rig_response(rig, reply, sizeof(reply), __func__) < 0) { RETURN_CACHED_MODE(rig, vfo, mode, width, cachep, p); } // Validate mode response using common function if (validate_mode_response(rig, reply, sizeof(reply), __func__, 5) < 0) { RETURN_CACHED_MODE(rig, vfo, mode, width, cachep, p); } // Update cache cachep->modeMainA = guohe2rmode(reply[7], q900_modes); cachep->modeMainB = guohe2rmode(reply[8], q900_modes); // Return requested mode *mode = (vfo == RIG_VFO_A) ? cachep->modeMainA : cachep->modeMainB; *width = p->filterBW; } return RIG_OK; } static int q900_get_split_vfo(RIG *rig, vfo_t vfo, split_t *split, vfo_t *tx_vfo) { *split = CACHE(rig)->split; if (*split) { *tx_vfo = RIG_VFO_B; } else { *tx_vfo = RIG_VFO_A; } return RIG_OK; } static int q900_get_vfo(RIG *rig, vfo_t *vfo) { { unsigned char reply[255]; // Send status sync command to get current VFO state q900_send_cmd1(rig, 0x0b, 0); // Read and validate response using common function if (read_rig_response(rig, reply, sizeof(reply), __func__) < 0) { RETURN_CACHED_VFO(rig, vfo); } // Validate VFO status field index won't overflow if (reply[4] < 13) { // Need at least 13 bytes to access reply[17] rig_debug(RIG_DEBUG_ERR, "%s: Response too short for VFO data, using cached values\n", __func__); RETURN_CACHED_VFO(rig, vfo); } // According to protocol doc, reply[17] is A/B frequency status *vfo = (reply[17] == 1) ? RIG_VFO_B : RIG_VFO_A; } return RIG_OK; } static int q900_get_ptt(RIG *rig, vfo_t vfo, ptt_t *ptt) { struct rig_cache *cachep = CACHE(rig); { unsigned char reply[255]; q900_send_cmd1(rig, 0x0b, 0); // Read and validate response using common function if (read_rig_response(rig, reply, sizeof(reply), __func__) < 0) { RETURN_CACHED_PTT(rig, ptt, cachep); } // Validate PTT status field index won't overflow if (reply[4] < 2) { // Need at least 2 bytes to access reply[6] rig_debug(RIG_DEBUG_ERR, "%s: Response too short for PTT data, using cached values\n", __func__); RETURN_CACHED_PTT(rig, ptt, cachep); } // Get PTT status cachep->ptt = reply[6]; *ptt = cachep->ptt; } return RIG_OK; } /* ---------------------------------------------------------------------- */ static int q900_read_ack(RIG *rig) { unsigned char dummy; hamlib_port_t *rp = RIGPORT(rig); rig_debug(RIG_DEBUG_VERBOSE, "%s: called\n", __func__); if (rp->post_write_delay == 0) { if (read_block(rp, &dummy, 1) < 0) { rig_debug(RIG_DEBUG_ERR, "%s: error reading ack\n", __func__); rig_debug(RIG_DEBUG_ERR, "%s: adjusting post_write_delay to avoid ack\n", __func__); rp->post_write_delay = 10; // arbitrary choice right now of max 100 cmds/sec return RIG_OK; // let it continue without checking for ack now } rig_debug(RIG_DEBUG_TRACE, "%s: ack value=0x%x\n", __func__, dummy); } return RIG_OK; } /* * private helper function to send a private command sequence. * Must only be complete 2-byte sequences. */ static int q900_send_cmd2(RIG *rig, unsigned char cmd, unsigned char value, int response) { unsigned char buf[64] = { 0xa5, 0xa5, 0xa5, 0xa5, 0x04, 0x00, 0x00, 0x00, 0x00 }; hamlib_port_t *rp = RIGPORT(rig); rig_debug(RIG_DEBUG_VERBOSE, "%s: called\n", __func__); buf[5] = cmd; buf[6] = value; unsigned int crc = CRC16Check(&buf[4], 3); buf[7] = crc >> 8; buf[8] = crc & 0xff; rig_flush(rp); write_block(rp, buf, 9); if (response) { unsigned char reply[256]; // Use common response reading function if (read_rig_response(rig, reply, sizeof(reply), __func__) < 0) { return RIG_OK; // Return OK to use cached values } } return q900_read_ack(rig); } static int q900_set_freq(RIG *rig, vfo_t vfo, freq_t freq) { unsigned char cmd[16] = { 0xa5, 0xa5, 0xa5, 0xa5, 11, 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; unsigned char reply[16]; hamlib_port_t *rp = RIGPORT(rig); rig_debug(RIG_DEBUG_VERBOSE, "q900: requested freq = %"PRIfreq" Hz\n", freq); if (vfo == RIG_VFO_B) { to_be(&cmd[6], CACHE(rig)->freqMainA, 4); to_be(&cmd[10], freq, 4); } else { to_be(&cmd[6], freq, 4); to_be(&cmd[10], CACHE(rig)->freqMainB, 4); } unsigned int crc = CRC16Check(&cmd[4], 10); cmd[14] = crc >> 8; cmd[15] = crc & 0xff; rig_flush(rp); write_block(rp, cmd, 16); // Read response int ret = read_block(rp, reply, 16); if (ret < 0) { rig_debug(RIG_DEBUG_ERR, "%s: Failed to read response, using cached values\n", __func__); // Update cache with requested frequency even if response failed if (vfo == RIG_VFO_B) { CACHE(rig)->freqMainB = freq; } else { CACHE(rig)->freqMainA = freq; } return RIG_OK; } // Update cache with requested frequency if (vfo == RIG_VFO_B) { CACHE(rig)->freqMainB = freq; } else { CACHE(rig)->freqMainA = freq; } return RIG_OK; } static int q900_set_vfo(RIG *rig, vfo_t vfo) { unsigned char cmd[9] = { 0xa5, 0xa5, 0xa5, 0xa5, 0x04, 0x1b, 0x00, 0x00, 0x00 }; cmd[6] = (vfo == RIG_VFO_B) ? 1 : 0; uint16_t crc = CRC16Check(&cmd[4], 3); cmd[7] = crc >> 8; cmd[8] = crc & 0xFF; rig_flush(RIGPORT(rig)); write_block(RIGPORT(rig), cmd, sizeof(cmd)); return RIG_OK; } static int q900_set_mode(RIG *rig, vfo_t vfo, rmode_t mode, pbwidth_t width) { hamlib_port_t *rp = RIGPORT(rig); unsigned char cmd[10] = { 0xa5, 0xa5, 0xa5, 0xa5, 5, 0x0a, 0x00, 0x00, 0x00, 0x00 }; unsigned char reply[10]; unsigned char i = rmode2guohe(mode, q900_modes); if (vfo == RIG_VFO_B) { cmd[6] = rmode2guohe(CACHE(rig)->modeMainA, q900_modes); cmd[7] = i; } else { cmd[6] = i; cmd[7] = rmode2guohe(CACHE(rig)->modeMainB, q900_modes); } int crc = CRC16Check(&cmd[4], 4); cmd[8] = crc >> 8; cmd[9] = crc & 0xff; rig_flush(rp); write_block(rp, cmd, 10); // Use common response reading function if (read_rig_response(rig, reply, sizeof(reply), __func__) < 0) { // Update cache with requested mode even if response failed if (vfo == RIG_VFO_B) { CACHE(rig)->modeMainB = mode; } else { CACHE(rig)->modeMainA = mode; } return RIG_OK; } // Validate mode field index won't overflow if (reply[4] < 3) { // Need at least 3 bytes to access reply[6] and reply[7] rig_debug(RIG_DEBUG_ERR, "%s: Response too short for mode data, using cached values\n", __func__); // Update cache with requested mode even if validation failed if (vfo == RIG_VFO_B) { CACHE(rig)->modeMainB = mode; } else { CACHE(rig)->modeMainA = mode; } return RIG_OK; } // Validate mode field indices are within bounds if (reply[6] >= GUOHE_MODE_TABLE_MAX) { rig_debug(RIG_DEBUG_ERR, "%s: Invalid mode A index %d, using cached values\n", __func__, reply[6]); // Update cache with requested mode even if validation failed if (vfo == RIG_VFO_B) { CACHE(rig)->modeMainB = mode; } else { CACHE(rig)->modeMainA = mode; } return RIG_OK; } if (reply[7] >= GUOHE_MODE_TABLE_MAX) { rig_debug(RIG_DEBUG_ERR, "%s: Invalid mode B index %d, using cached values\n", __func__, reply[7]); // Update cache with requested mode even if validation failed if (vfo == RIG_VFO_B) { CACHE(rig)->modeMainB = mode; } else { CACHE(rig)->modeMainA = mode; } return RIG_OK; } // Update cache with response data CACHE(rig)->modeMainA = guohe2rmode(reply[6], q900_modes); CACHE(rig)->modeMainB = guohe2rmode(reply[7], q900_modes); return RIG_OK; } static int q900_set_ptt(RIG *rig, vfo_t vfo, ptt_t ptt) { unsigned char cmd[9] = { 0xa5, 0xa5, 0xa5, 0xa5, 0x04, 0x07, (unsigned char)(ptt == RIG_PTT_ON ? 0x00 : 0x01), 0x00, 0x00 }; uint16_t crc = CRC16Check(&cmd[4], 3); cmd[7] = crc >> 8; cmd[8] = crc & 0xff; unsigned char reply[9]; q900_send(rig, cmd, sizeof(cmd), reply, sizeof(reply)); // Update cache CACHE(rig)->ptt = ptt; return RIG_OK; } static int q900_set_powerstat(RIG *rig, powerstat_t status) { rig_debug(RIG_DEBUG_VERBOSE, "%s: called\n", __func__); switch (status) { case RIG_POWER_OFF: return q900_send_cmd2(rig, 0x0c, 0x00, 0); case RIG_POWER_ON: return q900_send_cmd2(rig, 0x0c, 0x01, 0); case RIG_POWER_STANDBY: return q900_send_cmd2(rig, 0x0c, 0x00, 0); case RIG_POWER_OPERATE: return q900_send_cmd2(rig, 0x0c, 0x01, 0); case RIG_POWER_UNKNOWN: default: rig_debug(RIG_DEBUG_ERR, "%s: unsupported power status %d\n", __func__, status); return RIG_OK; } } /* FIXME: this function silently ignores the vfo args and just turns split ON or OFF. */ static int q900_set_split_vfo(RIG *rig, vfo_t vfo, split_t split, vfo_t tx_vfo) { rig_debug(RIG_DEBUG_VERBOSE, "%s: called\n", __func__); switch (split) { case RIG_SPLIT_ON: q900_send_cmd2(rig, 0x07, 0x1c, 1); break; case RIG_SPLIT_OFF: q900_send_cmd2(rig, 0x07, 0x1c, 0); break; default: rig_debug(RIG_DEBUG_ERR, "%s: unsupported split value %d\n", __func__, split); break; } CACHE(rig)->split = split; return RIG_OK; } /* ---------------------------------------------------------------------- */