GRBL-Advanced/grbl/Settings.c

409 wiersze
13 KiB
C

/*
Settings.c - eeprom configuration handling
Part of Grbl-Advanced
Copyright (c) 2011-2016 Sungeun K. Jeon for Gnea Research LLC
Copyright (c) 2009-2011 Simen Svale Skogsrud
Copyright (c) 2017 Patrick F.
Grbl-Advanced is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl-Advanced is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl-Advanced. If not, see <http://www.gnu.org/licenses/>.
*/
#include "Config.h"
#include "GCode.h"
#include "Limits.h"
#include "Protocol.h"
#include "Probe.h"
#include "Report.h"
#include "Settings.h"
#include "SpindleControl.h"
#include "System.h"
#include "Stepper.h"
#include "defaults.h"
#include "eeprom.h"
#include <stdint.h>
#include <string.h>
Settings_t settings;
// Method to store startup lines into EEPROM
void Settings_StoreStartupLine(uint8_t n, char *line)
{
#ifdef FORCE_BUFFER_SYNC_DURING_EEPROM_WRITE
Protocol_BufferSynchronize(); // A startup line may contain a motion and be executing.
#endif
uint32_t addr = n*(LINE_BUFFER_SIZE+1)+EEPROM_ADDR_STARTUP_BLOCK;
EE_WriteByteArray(addr, (uint8_t*)line, LINE_BUFFER_SIZE);
EE_Program();
}
// Method to store build info into EEPROM
// NOTE: This function can only be called in IDLE state.
void Settings_StoreBuildInfo(char *line)
{
// Build info can only be stored when state is IDLE.
EE_WriteByteArray(EEPROM_ADDR_BUILD_INFO, (uint8_t*)line, LINE_BUFFER_SIZE);
EE_Program();
}
// Method to store coord data parameters into EEPROM
void Settings_WriteCoordData(uint8_t coord_select, float *coord_data)
{
#ifdef FORCE_BUFFER_SYNC_DURING_EEPROM_WRITE
Protocol_BufferSynchronize();
#endif
uint32_t addr = coord_select*(sizeof(float)*N_AXIS+1) + EEPROM_ADDR_PARAMETERS;
EE_WriteByteArray(addr, (uint8_t*)coord_data, sizeof(float)*N_AXIS);
EE_Program();
}
// Method to store Grbl global settings struct and version number into EEPROM
// NOTE: This function can only be called in IDLE state.
void WriteGlobalSettings(void)
{
EE_WriteByte(0, SETTINGS_VERSION);
EE_WriteByteArray(EEPROM_ADDR_GLOBAL, (uint8_t*)&settings, sizeof(Settings_t));
EE_Program();
}
// Method to restore EEPROM-saved Grbl global settings back to defaults.
void Settings_Restore(uint8_t restore_flag) {
if(restore_flag & SETTINGS_RESTORE_DEFAULTS) {
settings.system_flags = DEFAULT_SYSTEM_INVERT_MASK;
settings.stepper_idle_lock_time = DEFAULT_STEPPER_IDLE_LOCK_TIME;
settings.step_invert_mask = DEFAULT_STEPPING_INVERT_MASK;
settings.dir_invert_mask = DEFAULT_DIRECTION_INVERT_MASK;
settings.status_report_mask = DEFAULT_STATUS_REPORT_MASK;
settings.junction_deviation = DEFAULT_JUNCTION_DEVIATION;
settings.arc_tolerance = DEFAULT_ARC_TOLERANCE;
settings.rpm_max = DEFAULT_SPINDLE_RPM_MAX;
settings.rpm_min = DEFAULT_SPINDLE_RPM_MIN;
settings.homing_dir_mask = DEFAULT_HOMING_DIR_MASK;
settings.homing_feed_rate = DEFAULT_HOMING_FEED_RATE;
settings.homing_seek_rate = DEFAULT_HOMING_SEEK_RATE;
settings.homing_debounce_delay = DEFAULT_HOMING_DEBOUNCE_DELAY;
settings.homing_pulloff = DEFAULT_HOMING_PULLOFF;
settings.flags = 0;
if(DEFAULT_REPORT_INCHES) { settings.flags |= BITFLAG_REPORT_INCHES; }
if(DEFAULT_LASER_MODE) { settings.flags |= BITFLAG_LASER_MODE; }
if(DEFAULT_INVERT_ST_ENABLE) { settings.flags |= BITFLAG_INVERT_ST_ENABLE; }
if(DEFAULT_HARD_LIMIT_ENABLE) { settings.flags |= BITFLAG_HARD_LIMIT_ENABLE; }
if(DEFAULT_HOMING_ENABLE) { settings.flags |= BITFLAG_HOMING_ENABLE; }
if(DEFAULT_SOFT_LIMIT_ENABLE) { settings.flags |= BITFLAG_SOFT_LIMIT_ENABLE; }
if(DEFAULT_INVERT_LIMIT_PINS) { settings.flags |= BITFLAG_INVERT_LIMIT_PINS; }
if(DEFAULT_INVERT_PROBE_PIN) { settings.flags |= BITFLAG_INVERT_PROBE_PIN; }
settings.steps_per_mm[X_AXIS] = DEFAULT_X_STEPS_PER_MM;
settings.steps_per_mm[Y_AXIS] = DEFAULT_Y_STEPS_PER_MM;
settings.steps_per_mm[Z_AXIS] = DEFAULT_Z_STEPS_PER_MM;
settings.max_rate[X_AXIS] = DEFAULT_X_MAX_RATE;
settings.max_rate[Y_AXIS] = DEFAULT_Y_MAX_RATE;
settings.max_rate[Z_AXIS] = DEFAULT_Z_MAX_RATE;
settings.acceleration[X_AXIS] = DEFAULT_X_ACCELERATION;
settings.acceleration[Y_AXIS] = DEFAULT_Y_ACCELERATION;
settings.acceleration[Z_AXIS] = DEFAULT_Z_ACCELERATION;
settings.max_travel[X_AXIS] = (-DEFAULT_X_MAX_TRAVEL);
settings.max_travel[Y_AXIS] = (-DEFAULT_Y_MAX_TRAVEL);
settings.max_travel[Z_AXIS] = (-DEFAULT_Z_MAX_TRAVEL);
WriteGlobalSettings();
}
if(restore_flag & SETTINGS_RESTORE_PARAMETERS) {
uint8_t idx;
float coord_data[N_AXIS];
memset(&coord_data, 0, sizeof(coord_data));
for(idx = 0; idx <= SETTING_INDEX_NCOORD; idx++) {
Settings_WriteCoordData(idx, coord_data);
}
}
if(restore_flag & SETTINGS_RESTORE_STARTUP_LINES) {
#if N_STARTUP_LINE > 0
EE_WriteByte(EEPROM_ADDR_STARTUP_BLOCK, 0);
EE_WriteByte(EEPROM_ADDR_STARTUP_BLOCK+1, 0); // Checksum
#endif
#if N_STARTUP_LINE > 1
EE_WriteByte(EEPROM_ADDR_STARTUP_BLOCK+(LINE_BUFFER_SIZE+1), 0);
EE_WriteByte(EEPROM_ADDR_STARTUP_BLOCK+(LINE_BUFFER_SIZE+2), 0); // Checksum
#endif
EE_Program();
}
if(restore_flag & SETTINGS_RESTORE_BUILD_INFO) {
EE_WriteByte(EEPROM_ADDR_BUILD_INFO , 0);
EE_WriteByte(EEPROM_ADDR_BUILD_INFO+1 , 0); // Checksum
EE_Program();
}
}
// Reads startup line from EEPROM. Updated pointed line string data.
uint8_t Settings_ReadStartupLine(uint8_t n, char *line)
{
uint32_t addr = n*(LINE_BUFFER_SIZE+1)+EEPROM_ADDR_STARTUP_BLOCK;
if (!(EE_ReadByteArray((uint8_t*)line, addr, LINE_BUFFER_SIZE))) {
// Reset line with default value
line[0] = 0; // Empty line
Settings_StoreStartupLine(n, line);
return false;
}
return true;
}
// Reads startup line from EEPROM. Updated pointed line string data.
uint8_t Settings_ReadBuildInfo(char *line)
{
if(!(EE_ReadByteArray((uint8_t*)line, EEPROM_ADDR_BUILD_INFO, LINE_BUFFER_SIZE))) {
// Reset line with default value
line[0] = 0; // Empty line
Settings_StoreBuildInfo(line);
return false;
}
return true;
}
// Read selected coordinate data from EEPROM. Updates pointed coord_data value.
uint8_t Settings_ReadCoordData(uint8_t coord_select, float *coord_data)
{
uint32_t addr = coord_select*(sizeof(float)*N_AXIS+1) + EEPROM_ADDR_PARAMETERS;
if(!(EE_ReadByteArray((uint8_t*)coord_data, addr, sizeof(float)*N_AXIS))) {
// Reset with default zero vector
memset(&coord_data, 0.0, sizeof(coord_data));
Settings_WriteCoordData(coord_select, coord_data);
return false;
}
return true;
}
// Reads Grbl global settings struct from EEPROM.
uint8_t ReadGlobalSettings() {
// Check version-byte of eeprom
uint8_t version = EE_ReadByte(0);
if(version == SETTINGS_VERSION) {
// Read settings-record and check checksum
if(!(EE_ReadByteArray((uint8_t*)&settings, EEPROM_ADDR_GLOBAL, sizeof(Settings_t)))) {
return false;
}
}
else {
return false;
}
return true;
}
// A helper method to set settings from command line
uint8_t Settings_StoreGlobalSetting(uint8_t parameter, float value) {
if(value < 0.0) {
return STATUS_NEGATIVE_VALUE;
}
if(parameter >= AXIS_SETTINGS_START_VAL) {
// Store axis configuration. Axis numbering sequence set by AXIS_SETTING defines.
// NOTE: Ensure the setting index corresponds to the report.c settings printout.
parameter -= AXIS_SETTINGS_START_VAL;
uint8_t set_idx = 0;
while(set_idx < AXIS_N_SETTINGS) {
if(parameter < N_AXIS) {
// Valid axis setting found.
switch (set_idx) {
case 0:
#ifdef MAX_STEP_RATE_HZ
if (value*settings.max_rate[parameter] > (MAX_STEP_RATE_HZ*60.0)) { return(STATUS_MAX_STEP_RATE_EXCEEDED); }
#endif
settings.steps_per_mm[parameter] = value;
break;
case 1:
#ifdef MAX_STEP_RATE_HZ
if (value*settings.steps_per_mm[parameter] > (MAX_STEP_RATE_HZ*60.0)) { return(STATUS_MAX_STEP_RATE_EXCEEDED); }
#endif
settings.max_rate[parameter] = value;
break;
case 2: settings.acceleration[parameter] = value*60*60; break; // Convert to mm/min^2 for grbl internal use.
case 3: settings.max_travel[parameter] = -value; break; // Store as negative for grbl internal use.
}
break; // Exit while-loop after setting has been configured and proceed to the EEPROM write call.
}
else {
set_idx++;
// If axis index greater than N_AXIS or setting index greater than number of axis settings, error out.
if ((parameter < AXIS_SETTINGS_INCREMENT) || (set_idx == AXIS_N_SETTINGS)) { return(STATUS_INVALID_STATEMENT); }
parameter -= AXIS_SETTINGS_INCREMENT;
}
}
}
else {
// Store non-axis Grbl settings
uint8_t int_value = trunc(value);
switch(parameter)
{
case 0:
settings.system_flags = int_value;
break;
case 1:
settings.stepper_idle_lock_time = int_value;
break;
case 2:
settings.step_invert_mask = int_value;
Stepper_GenerateStepDirInvertMasks(); // Regenerate step and direction port invert masks.
break;
case 3:
settings.dir_invert_mask = int_value;
Stepper_GenerateStepDirInvertMasks(); // Regenerate step and direction port invert masks.
break;
case 4: // Reset to ensure change. Immediate re-init may cause problems.
if (int_value) { settings.flags |= BITFLAG_INVERT_ST_ENABLE; }
else { settings.flags &= ~BITFLAG_INVERT_ST_ENABLE; }
break;
case 5: // Reset to ensure change. Immediate re-init may cause problems.
if (int_value) { settings.flags |= BITFLAG_INVERT_LIMIT_PINS; }
else { settings.flags &= ~BITFLAG_INVERT_LIMIT_PINS; }
break;
case 6: // Reset to ensure change. Immediate re-init may cause problems.
if (int_value) { settings.flags |= BITFLAG_INVERT_PROBE_PIN; }
else { settings.flags &= ~BITFLAG_INVERT_PROBE_PIN; }
Probe_ConfigureInvertMask(false);
break;
case 10: settings.status_report_mask = int_value; break;
case 11: settings.junction_deviation = value; break;
case 12: settings.arc_tolerance = value; break;
case 13:
if (int_value) { settings.flags |= BITFLAG_REPORT_INCHES; }
else { settings.flags &= ~BITFLAG_REPORT_INCHES; }
System_FlagWcoChange(); // Make sure WCO is immediately updated.
break;
case 20:
if (int_value) {
if (BIT_IS_FALSE(settings.flags, BITFLAG_HOMING_ENABLE)) { return(STATUS_SOFT_LIMIT_ERROR); }
settings.flags |= BITFLAG_SOFT_LIMIT_ENABLE;
} else { settings.flags &= ~BITFLAG_SOFT_LIMIT_ENABLE; }
break;
case 21:
if (int_value) { settings.flags |= BITFLAG_HARD_LIMIT_ENABLE; }
else { settings.flags &= ~BITFLAG_HARD_LIMIT_ENABLE; }
Limits_Init(); // Re-init to immediately change. NOTE: Nice to have but could be problematic later.
break;
case 22:
if (int_value) { settings.flags |= BITFLAG_HOMING_ENABLE; }
else {
settings.flags &= ~BITFLAG_HOMING_ENABLE;
settings.flags &= ~BITFLAG_SOFT_LIMIT_ENABLE; // Force disable soft-limits.
}
break;
case 23: settings.homing_dir_mask = int_value; break;
case 24: settings.homing_feed_rate = value; break;
case 25: settings.homing_seek_rate = value; break;
case 26: settings.homing_debounce_delay = int_value; break;
case 27: settings.homing_pulloff = value; break;
case 30: settings.rpm_max = value; Spindle_Init(); break; // Re-initialize spindle rpm calibration
case 31: settings.rpm_min = value; Spindle_Init(); break; // Re-initialize spindle rpm calibration
case 32:
if (int_value) { settings.flags |= BITFLAG_LASER_MODE; }
else { settings.flags &= ~BITFLAG_LASER_MODE; }
break;
default:
return(STATUS_INVALID_STATEMENT);
}
}
WriteGlobalSettings();
return 0;
}
// Initialize the config subsystem
void Settings_Init(void)
{
EE_Init();
if(!ReadGlobalSettings()) {
Report_StatusMessage(STATUS_SETTING_READ_FAIL);
Settings_Restore(SETTINGS_RESTORE_ALL); // Force restore all EEPROM data.
Report_GrblSettings();
}
}
// Returns step pin mask according to Grbl internal axis indexing.
uint8_t Settings_GetStepPinMask(uint8_t axis_idx)
{
if(axis_idx == X_AXIS) { return (1<<X_STEP_BIT); }
if(axis_idx == Y_AXIS) { return (1<<Y_STEP_BIT); }
return (1<<Z_STEP_BIT);
}
// Returns direction pin mask according to Grbl internal axis indexing.
uint8_t Settings_GetDirectionPinMask(uint8_t axis_idx)
{
if(axis_idx == X_AXIS) { return (1<<X_DIRECTION_BIT); }
if(axis_idx == Y_AXIS) { return (1<<Y_DIRECTION_BIT); }
return (1<<Z_DIRECTION_BIT);
}
// Returns limit pin mask according to Grbl internal axis indexing.
uint8_t Settings_GetLimitPinMask(uint8_t axis_idx)
{
if(axis_idx == X_AXIS) { return (1<<X_STEP_BIT); }
if(axis_idx == Y_AXIS) { return (1<<Y_STEP_BIT); }
return (1<<Z_STEP_BIT);
}