/* Settings.c - eeprom configuration handling Part of Grbl-Advanced Copyright (c) 2011-2016 Sungeun K. Jeon for Gnea Research LLC Copyright (c) 2009-2011 Simen Svale Skogsrud Copyright (c) 2017 Patrick F. Grbl-Advanced is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Grbl-Advanced is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Grbl-Advanced. If not, see . */ #include "Config.h" #include "GCode.h" #include "Limits.h" #include "Protocol.h" #include "Probe.h" #include "Report.h" #include "Settings.h" #include "SpindleControl.h" #include "System.h" #include "Stepper.h" #include "defaults.h" #include "eeprom.h" #include #include Settings_t settings; // Method to store startup lines into EEPROM void Settings_StoreStartupLine(uint8_t n, char *line) { #ifdef FORCE_BUFFER_SYNC_DURING_EEPROM_WRITE Protocol_BufferSynchronize(); // A startup line may contain a motion and be executing. #endif uint32_t addr = n*(LINE_BUFFER_SIZE+1)+EEPROM_ADDR_STARTUP_BLOCK; EE_WriteByteArray(addr, (uint8_t*)line, LINE_BUFFER_SIZE); EE_Program(); } // Method to store build info into EEPROM // NOTE: This function can only be called in IDLE state. void Settings_StoreBuildInfo(char *line) { // Build info can only be stored when state is IDLE. EE_WriteByteArray(EEPROM_ADDR_BUILD_INFO, (uint8_t*)line, LINE_BUFFER_SIZE); EE_Program(); } // Method to store coord data parameters into EEPROM void Settings_WriteCoordData(uint8_t coord_select, float *coord_data) { #ifdef FORCE_BUFFER_SYNC_DURING_EEPROM_WRITE Protocol_BufferSynchronize(); #endif uint32_t addr = coord_select*(sizeof(float)*N_AXIS+1) + EEPROM_ADDR_PARAMETERS; EE_WriteByteArray(addr, (uint8_t*)coord_data, sizeof(float)*N_AXIS); EE_Program(); } // Method to store Grbl global settings struct and version number into EEPROM // NOTE: This function can only be called in IDLE state. void WriteGlobalSettings(void) { EE_WriteByte(0, SETTINGS_VERSION); EE_WriteByteArray(EEPROM_ADDR_GLOBAL, (uint8_t*)&settings, sizeof(Settings_t)); EE_Program(); } // Method to restore EEPROM-saved Grbl global settings back to defaults. void Settings_Restore(uint8_t restore_flag) { if(restore_flag & SETTINGS_RESTORE_DEFAULTS) { settings.system_flags = DEFAULT_SYSTEM_INVERT_MASK; settings.stepper_idle_lock_time = DEFAULT_STEPPER_IDLE_LOCK_TIME; settings.step_invert_mask = DEFAULT_STEPPING_INVERT_MASK; settings.dir_invert_mask = DEFAULT_DIRECTION_INVERT_MASK; settings.status_report_mask = DEFAULT_STATUS_REPORT_MASK; settings.junction_deviation = DEFAULT_JUNCTION_DEVIATION; settings.arc_tolerance = DEFAULT_ARC_TOLERANCE; settings.rpm_max = DEFAULT_SPINDLE_RPM_MAX; settings.rpm_min = DEFAULT_SPINDLE_RPM_MIN; settings.homing_dir_mask = DEFAULT_HOMING_DIR_MASK; settings.homing_feed_rate = DEFAULT_HOMING_FEED_RATE; settings.homing_seek_rate = DEFAULT_HOMING_SEEK_RATE; settings.homing_debounce_delay = DEFAULT_HOMING_DEBOUNCE_DELAY; settings.homing_pulloff = DEFAULT_HOMING_PULLOFF; settings.flags = 0; if(DEFAULT_REPORT_INCHES) { settings.flags |= BITFLAG_REPORT_INCHES; } if(DEFAULT_LASER_MODE) { settings.flags |= BITFLAG_LASER_MODE; } if(DEFAULT_INVERT_ST_ENABLE) { settings.flags |= BITFLAG_INVERT_ST_ENABLE; } if(DEFAULT_HARD_LIMIT_ENABLE) { settings.flags |= BITFLAG_HARD_LIMIT_ENABLE; } if(DEFAULT_HOMING_ENABLE) { settings.flags |= BITFLAG_HOMING_ENABLE; } if(DEFAULT_SOFT_LIMIT_ENABLE) { settings.flags |= BITFLAG_SOFT_LIMIT_ENABLE; } if(DEFAULT_INVERT_LIMIT_PINS) { settings.flags |= BITFLAG_INVERT_LIMIT_PINS; } if(DEFAULT_INVERT_PROBE_PIN) { settings.flags |= BITFLAG_INVERT_PROBE_PIN; } settings.steps_per_mm[X_AXIS] = DEFAULT_X_STEPS_PER_MM; settings.steps_per_mm[Y_AXIS] = DEFAULT_Y_STEPS_PER_MM; settings.steps_per_mm[Z_AXIS] = DEFAULT_Z_STEPS_PER_MM; settings.max_rate[X_AXIS] = DEFAULT_X_MAX_RATE; settings.max_rate[Y_AXIS] = DEFAULT_Y_MAX_RATE; settings.max_rate[Z_AXIS] = DEFAULT_Z_MAX_RATE; settings.acceleration[X_AXIS] = DEFAULT_X_ACCELERATION; settings.acceleration[Y_AXIS] = DEFAULT_Y_ACCELERATION; settings.acceleration[Z_AXIS] = DEFAULT_Z_ACCELERATION; settings.max_travel[X_AXIS] = (-DEFAULT_X_MAX_TRAVEL); settings.max_travel[Y_AXIS] = (-DEFAULT_Y_MAX_TRAVEL); settings.max_travel[Z_AXIS] = (-DEFAULT_Z_MAX_TRAVEL); WriteGlobalSettings(); } if(restore_flag & SETTINGS_RESTORE_PARAMETERS) { uint8_t idx; float coord_data[N_AXIS]; memset(&coord_data, 0, sizeof(coord_data)); for(idx = 0; idx <= SETTING_INDEX_NCOORD; idx++) { Settings_WriteCoordData(idx, coord_data); } } if(restore_flag & SETTINGS_RESTORE_STARTUP_LINES) { #if N_STARTUP_LINE > 0 EE_WriteByte(EEPROM_ADDR_STARTUP_BLOCK, 0); EE_WriteByte(EEPROM_ADDR_STARTUP_BLOCK+1, 0); // Checksum #endif #if N_STARTUP_LINE > 1 EE_WriteByte(EEPROM_ADDR_STARTUP_BLOCK+(LINE_BUFFER_SIZE+1), 0); EE_WriteByte(EEPROM_ADDR_STARTUP_BLOCK+(LINE_BUFFER_SIZE+2), 0); // Checksum #endif EE_Program(); } if(restore_flag & SETTINGS_RESTORE_BUILD_INFO) { EE_WriteByte(EEPROM_ADDR_BUILD_INFO , 0); EE_WriteByte(EEPROM_ADDR_BUILD_INFO+1 , 0); // Checksum EE_Program(); } } // Reads startup line from EEPROM. Updated pointed line string data. uint8_t Settings_ReadStartupLine(uint8_t n, char *line) { uint32_t addr = n*(LINE_BUFFER_SIZE+1)+EEPROM_ADDR_STARTUP_BLOCK; if (!(EE_ReadByteArray((uint8_t*)line, addr, LINE_BUFFER_SIZE))) { // Reset line with default value line[0] = 0; // Empty line Settings_StoreStartupLine(n, line); return false; } return true; } // Reads startup line from EEPROM. Updated pointed line string data. uint8_t Settings_ReadBuildInfo(char *line) { if(!(EE_ReadByteArray((uint8_t*)line, EEPROM_ADDR_BUILD_INFO, LINE_BUFFER_SIZE))) { // Reset line with default value line[0] = 0; // Empty line Settings_StoreBuildInfo(line); return false; } return true; } // Read selected coordinate data from EEPROM. Updates pointed coord_data value. uint8_t Settings_ReadCoordData(uint8_t coord_select, float *coord_data) { uint32_t addr = coord_select*(sizeof(float)*N_AXIS+1) + EEPROM_ADDR_PARAMETERS; if(!(EE_ReadByteArray((uint8_t*)coord_data, addr, sizeof(float)*N_AXIS))) { // Reset with default zero vector memset(&coord_data, 0.0, sizeof(coord_data)); Settings_WriteCoordData(coord_select, coord_data); return false; } return true; } // Reads Grbl global settings struct from EEPROM. uint8_t ReadGlobalSettings() { // Check version-byte of eeprom uint8_t version = EE_ReadByte(0); if(version == SETTINGS_VERSION) { // Read settings-record and check checksum if(!(EE_ReadByteArray((uint8_t*)&settings, EEPROM_ADDR_GLOBAL, sizeof(Settings_t)))) { return false; } } else { return false; } return true; } // A helper method to set settings from command line uint8_t Settings_StoreGlobalSetting(uint8_t parameter, float value) { if(value < 0.0) { return STATUS_NEGATIVE_VALUE; } if(parameter >= AXIS_SETTINGS_START_VAL) { // Store axis configuration. Axis numbering sequence set by AXIS_SETTING defines. // NOTE: Ensure the setting index corresponds to the report.c settings printout. parameter -= AXIS_SETTINGS_START_VAL; uint8_t set_idx = 0; while(set_idx < AXIS_N_SETTINGS) { if(parameter < N_AXIS) { // Valid axis setting found. switch (set_idx) { case 0: #ifdef MAX_STEP_RATE_HZ if (value*settings.max_rate[parameter] > (MAX_STEP_RATE_HZ*60.0)) { return(STATUS_MAX_STEP_RATE_EXCEEDED); } #endif settings.steps_per_mm[parameter] = value; break; case 1: #ifdef MAX_STEP_RATE_HZ if (value*settings.steps_per_mm[parameter] > (MAX_STEP_RATE_HZ*60.0)) { return(STATUS_MAX_STEP_RATE_EXCEEDED); } #endif settings.max_rate[parameter] = value; break; case 2: settings.acceleration[parameter] = value*60*60; break; // Convert to mm/min^2 for grbl internal use. case 3: settings.max_travel[parameter] = -value; break; // Store as negative for grbl internal use. } break; // Exit while-loop after setting has been configured and proceed to the EEPROM write call. } else { set_idx++; // If axis index greater than N_AXIS or setting index greater than number of axis settings, error out. if ((parameter < AXIS_SETTINGS_INCREMENT) || (set_idx == AXIS_N_SETTINGS)) { return(STATUS_INVALID_STATEMENT); } parameter -= AXIS_SETTINGS_INCREMENT; } } } else { // Store non-axis Grbl settings uint8_t int_value = trunc(value); switch(parameter) { case 0: settings.system_flags = int_value; break; case 1: settings.stepper_idle_lock_time = int_value; break; case 2: settings.step_invert_mask = int_value; Stepper_GenerateStepDirInvertMasks(); // Regenerate step and direction port invert masks. break; case 3: settings.dir_invert_mask = int_value; Stepper_GenerateStepDirInvertMasks(); // Regenerate step and direction port invert masks. break; case 4: // Reset to ensure change. Immediate re-init may cause problems. if (int_value) { settings.flags |= BITFLAG_INVERT_ST_ENABLE; } else { settings.flags &= ~BITFLAG_INVERT_ST_ENABLE; } break; case 5: // Reset to ensure change. Immediate re-init may cause problems. if (int_value) { settings.flags |= BITFLAG_INVERT_LIMIT_PINS; } else { settings.flags &= ~BITFLAG_INVERT_LIMIT_PINS; } break; case 6: // Reset to ensure change. Immediate re-init may cause problems. if (int_value) { settings.flags |= BITFLAG_INVERT_PROBE_PIN; } else { settings.flags &= ~BITFLAG_INVERT_PROBE_PIN; } Probe_ConfigureInvertMask(false); break; case 10: settings.status_report_mask = int_value; break; case 11: settings.junction_deviation = value; break; case 12: settings.arc_tolerance = value; break; case 13: if (int_value) { settings.flags |= BITFLAG_REPORT_INCHES; } else { settings.flags &= ~BITFLAG_REPORT_INCHES; } System_FlagWcoChange(); // Make sure WCO is immediately updated. break; case 20: if (int_value) { if (BIT_IS_FALSE(settings.flags, BITFLAG_HOMING_ENABLE)) { return(STATUS_SOFT_LIMIT_ERROR); } settings.flags |= BITFLAG_SOFT_LIMIT_ENABLE; } else { settings.flags &= ~BITFLAG_SOFT_LIMIT_ENABLE; } break; case 21: if (int_value) { settings.flags |= BITFLAG_HARD_LIMIT_ENABLE; } else { settings.flags &= ~BITFLAG_HARD_LIMIT_ENABLE; } Limits_Init(); // Re-init to immediately change. NOTE: Nice to have but could be problematic later. break; case 22: if (int_value) { settings.flags |= BITFLAG_HOMING_ENABLE; } else { settings.flags &= ~BITFLAG_HOMING_ENABLE; settings.flags &= ~BITFLAG_SOFT_LIMIT_ENABLE; // Force disable soft-limits. } break; case 23: settings.homing_dir_mask = int_value; break; case 24: settings.homing_feed_rate = value; break; case 25: settings.homing_seek_rate = value; break; case 26: settings.homing_debounce_delay = int_value; break; case 27: settings.homing_pulloff = value; break; case 30: settings.rpm_max = value; Spindle_Init(); break; // Re-initialize spindle rpm calibration case 31: settings.rpm_min = value; Spindle_Init(); break; // Re-initialize spindle rpm calibration case 32: if (int_value) { settings.flags |= BITFLAG_LASER_MODE; } else { settings.flags &= ~BITFLAG_LASER_MODE; } break; default: return(STATUS_INVALID_STATEMENT); } } WriteGlobalSettings(); return 0; } // Initialize the config subsystem void Settings_Init(void) { EE_Init(); if(!ReadGlobalSettings()) { Report_StatusMessage(STATUS_SETTING_READ_FAIL); Settings_Restore(SETTINGS_RESTORE_ALL); // Force restore all EEPROM data. Report_GrblSettings(); } } // Returns step pin mask according to Grbl internal axis indexing. uint8_t Settings_GetStepPinMask(uint8_t axis_idx) { if(axis_idx == X_AXIS) { return (1<