meshtastic-firmware/src/Power.cpp

569 wiersze
19 KiB
C++

#include "power.h"
#include "NodeDB.h"
#include "PowerFSM.h"
#include "configuration.h"
#include "main.h"
#include "sleep.h"
#include "utils.h"
#include "buzz/buzz.h"
#ifdef HAS_PMU
#include "XPowersLibInterface.hpp"
#include "XPowersAXP2101.tpp"
#include "XPowersAXP192.tpp"
XPowersLibInterface *PMU = NULL;
#else
// Copy of the base class defined in axp20x.h.
// I'd rather not inlude axp20x.h as it brings Wire dependency.
class HasBatteryLevel
{
public:
/**
* Battery state of charge, from 0 to 100 or -1 for unknown
*/
virtual int getBatteryPercent() { return -1; }
/**
* The raw voltage of the battery or NAN if unknown
*/
virtual uint16_t getBattVoltage() { return 0; }
/**
* return true if there is a battery installed in this unit
*/
virtual bool isBatteryConnect() { return false; }
virtual bool isVbusIn() { return false; }
virtual bool isCharging() { return false; }
};
#endif
bool pmu_irq = false;
Power *power;
using namespace meshtastic;
#ifndef AREF_VOLTAGE
#if defined(ARCH_NRF52)
/*
* Internal Reference is +/-0.6V, with an adjustable gain of 1/6, 1/5, 1/4,
* 1/3, 1/2 or 1, meaning 3.6, 3.0, 2.4, 1.8, 1.2 or 0.6V for the ADC levels.
*
* External Reference is VDD/4, with an adjustable gain of 1, 2 or 4, meaning
* VDD/4, VDD/2 or VDD for the ADC levels.
*
* Default settings are internal reference with 1/6 gain (GND..3.6V ADC range)
*/
#define AREF_VOLTAGE 3.6
#else
#define AREF_VOLTAGE 3.3
#endif
#endif
/**
* If this board has a battery level sensor, set this to a valid implementation
*/
static HasBatteryLevel *batteryLevel; // Default to NULL for no battery level sensor
/**
* A simple battery level sensor that assumes the battery voltage is attached via a voltage-divider to an analog input
*/
class AnalogBatteryLevel : public HasBatteryLevel
{
/**
* Battery state of charge, from 0 to 100 or -1 for unknown
*
* FIXME - use a lipo lookup table, the current % full is super wrong
*/
virtual int getBatteryPercent() override
{
float v = getBattVoltage();
if (v < noBatVolt)
return -1; // If voltage is super low assume no battery installed
#ifdef ARCH_ESP32
// This does not work on a RAK4631 with battery connected
if (v > chargingVolt)
return 0; // While charging we can't report % full on the battery
#endif
return clamp((int)(100 * (v - emptyVolt) / (fullVolt - emptyVolt)), 0, 100);
}
/**
* The raw voltage of the batteryin millivolts or NAN if unknown
*/
virtual uint16_t getBattVoltage() override
{
#ifndef ADC_MULTIPLIER
#define ADC_MULTIPLIER 2.0
#endif
#ifdef BATTERY_PIN
// Override variant or default ADC_MULTIPLIER if we have the override pref
float operativeAdcMultiplier = config.power.adc_multiplier_override > 0
? config.power.adc_multiplier_override
: ADC_MULTIPLIER;
// Do not call analogRead() often.
const uint32_t min_read_interval = 5000;
if (millis() - last_read_time_ms > min_read_interval) {
last_read_time_ms = millis();
#ifdef BATTERY_SENSE_SAMPLES
//Set the number of samples, it has an effect of increasing sensitivity, especially in complex electromagnetic environment.
uint32_t raw = 0;
for(uint32_t i=0; i<BATTERY_SENSE_SAMPLES;i++){
raw += analogRead(BATTERY_PIN);
}
raw = raw/BATTERY_SENSE_SAMPLES;
#else
uint32_t raw = analogRead(BATTERY_PIN);
#endif
float scaled;
#ifndef VBAT_RAW_TO_SCALED
scaled = 1000.0 * operativeAdcMultiplier * (AREF_VOLTAGE / 1024.0) * raw;
#else
scaled = VBAT_RAW_TO_SCALED(raw); // defined in variant.h
#endif
// DEBUG_MSG("battery gpio %d raw val=%u scaled=%u\n", BATTERY_PIN, raw, (uint32_t)(scaled));
last_read_value = scaled;
return scaled;
} else {
return last_read_value;
}
#else
return 0;
#endif
}
/**
* return true if there is a battery installed in this unit
*/
virtual bool isBatteryConnect() override { return getBatteryPercent() != -1; }
/// If we see a battery voltage higher than physics allows - assume charger is pumping
/// in power
virtual bool isVbusIn() override { return getBattVoltage() > chargingVolt; }
/// Assume charging if we have a battery and external power is connected.
/// we can't be smart enough to say 'full'?
virtual bool isCharging() override { return isBatteryConnect() && isVbusIn(); }
private:
/// If we see a battery voltage higher than physics allows - assume charger is pumping
/// in power
#ifndef BAT_FULLVOLT
#define BAT_FULLVOLT 4200
#endif
#ifndef BAT_EMPTYVOLT
#define BAT_EMPTYVOLT 3270
#endif
#ifndef BAT_CHARGINGVOLT
#define BAT_CHARGINGVOLT 4210
#endif
#ifndef BAT_NOBATVOLT
#define BAT_NOBATVOLT 2230
#endif
/// For heltecs with no battery connected, the measured voltage is 2204, so raising to 2230 from 2100
const float fullVolt = BAT_FULLVOLT, emptyVolt = BAT_EMPTYVOLT, chargingVolt = BAT_CHARGINGVOLT, noBatVolt = BAT_NOBATVOLT;
float last_read_value = 0.0;
uint32_t last_read_time_ms = 0;
};
AnalogBatteryLevel analogLevel;
Power::Power() : OSThread("Power")
{
statusHandler = {};
low_voltage_counter = 0;
}
bool Power::analogInit()
{
#ifdef BATTERY_PIN
DEBUG_MSG("Using analog input %d for battery level\n", BATTERY_PIN);
// disable any internal pullups
pinMode(BATTERY_PIN, INPUT);
#ifdef ARCH_ESP32
// ESP32 needs special analog stuff
adcAttachPin(BATTERY_PIN);
#endif
#ifdef ARCH_NRF52
#ifdef VBAT_AR_INTERNAL
analogReference(VBAT_AR_INTERNAL);
#else
analogReference(AR_INTERNAL); // 3.6V
#endif
#endif
#ifndef BATTERY_SENSE_RESOLUTION_BITS
#define BATTERY_SENSE_RESOLUTION_BITS 10
#endif
// adcStart(BATTERY_PIN);
analogReadResolution(BATTERY_SENSE_RESOLUTION_BITS); // Default of 12 is not very linear. Recommended to use 10 or 11
// depending on needed resolution.
batteryLevel = &analogLevel;
return true;
#else
return false;
#endif
}
bool Power::setup()
{
bool found = axpChipInit();
if (!found) {
found = analogInit();
}
enabled = found;
low_voltage_counter = 0;
return found;
}
void Power::shutdown()
{
#ifdef HAS_PMU
DEBUG_MSG("Shutting down\n");
if(PMU){
PMU->setChargingLedMode(XPOWERS_CHG_LED_OFF);
PMU->shutdown();
}
#elif defined(ARCH_NRF52)
playBeep();
ledOff(PIN_LED1);
ledOff(PIN_LED2);
doDeepSleep(DELAY_FOREVER);
#endif
}
/// Reads power status to powerStatus singleton.
//
// TODO(girts): move this and other axp stuff to power.h/power.cpp.
void Power::readPowerStatus()
{
if (batteryLevel) {
bool hasBattery = batteryLevel->isBatteryConnect();
int batteryVoltageMv = 0;
int8_t batteryChargePercent = 0;
if (hasBattery) {
batteryVoltageMv = batteryLevel->getBattVoltage();
// If the AXP192 returns a valid battery percentage, use it
if (batteryLevel->getBatteryPercent() >= 0) {
batteryChargePercent = batteryLevel->getBatteryPercent();
} else {
// If the AXP192 returns a percentage less than 0, the feature is either not supported or there is an error
// In that case, we compute an estimate of the charge percent based on maximum and minimum voltages defined in
// power.h
batteryChargePercent =
clamp((int)(((batteryVoltageMv - BAT_MILLIVOLTS_EMPTY) * 1e2) / (BAT_MILLIVOLTS_FULL - BAT_MILLIVOLTS_EMPTY)),
0, 100);
}
}
// Notify any status instances that are observing us
const PowerStatus powerStatus2 =
PowerStatus(hasBattery ? OptTrue : OptFalse, batteryLevel->isVbusIn() ? OptTrue : OptFalse,
batteryLevel->isCharging() ? OptTrue : OptFalse, batteryVoltageMv, batteryChargePercent);
DEBUG_MSG("Battery: usbPower=%d, isCharging=%d, batMv=%d, batPct=%d\n", powerStatus2.getHasUSB(),
powerStatus2.getIsCharging(), powerStatus2.getBatteryVoltageMv(), powerStatus2.getBatteryChargePercent());
newStatus.notifyObservers(&powerStatus2);
// If we have a battery at all and it is less than 10% full, force deep sleep if we have more than 3 low readings in a row
// Supect fluctuating voltage on the RAK4631 to force it to deep sleep even if battery is at 85% after only a few days
#ifdef ARCH_NRF52
if (powerStatus2.getHasBattery() && !powerStatus2.getHasUSB()) {
if (batteryLevel->getBattVoltage() < MIN_BAT_MILLIVOLTS) {
low_voltage_counter++;
if (low_voltage_counter > 3)
powerFSM.trigger(EVENT_LOW_BATTERY);
} else {
low_voltage_counter = 0;
}
}
#else
// If we have a battery at all and it is less than 10% full, force deep sleep
if (powerStatus2.getHasBattery() && !powerStatus2.getHasUSB() && batteryLevel->getBattVoltage() < MIN_BAT_MILLIVOLTS)
powerFSM.trigger(EVENT_LOW_BATTERY);
#endif
} else {
// No power sensing on this board - tell everyone else we have no idea what is happening
const PowerStatus powerStatus3 = PowerStatus(OptUnknown, OptUnknown, OptUnknown, -1, -1);
newStatus.notifyObservers(&powerStatus3);
}
}
int32_t Power::runOnce()
{
readPowerStatus();
#ifdef HAS_PMU
// WE no longer use the IRQ line to wake the CPU (due to false wakes from sleep), but we do poll
// the IRQ status by reading the registers over I2C
if(PMU){
PMU->getIrqStatus();
if(PMU->isVbusRemoveIrq()){
DEBUG_MSG("USB unplugged\n");
powerFSM.trigger(EVENT_POWER_DISCONNECTED);
}
if (PMU->isVbusInsertIrq()) {
DEBUG_MSG("USB plugged In\n");
powerFSM.trigger(EVENT_POWER_CONNECTED);
}
/*
Other things we could check if we cared...
if (PMU->isBatChagerStartIrq()) {
DEBUG_MSG("Battery start charging\n");
}
if (PMU->isBatChagerDoneIrq()) {
DEBUG_MSG("Battery fully charged\n");
}
if (PMU->isBatInsertIrq()) {
DEBUG_MSG("Battery inserted\n");
}
if (PMU->isBatRemoveIrq()) {
DEBUG_MSG("Battery removed\n");
}
if (PMU->isPekeyShortPressIrq()) {
DEBUG_MSG("PEK short button press\n");
}
*/
PMU->clearIrqStatus();
}
#endif
// Only read once every 20 seconds once the power status for the app has been initialized
return (statusHandler && statusHandler->isInitialized()) ? (1000 * 20) : RUN_SAME;
}
/**
* Init the power manager chip
*
* axp192 power
DCDC1 0.7-3.5V @ 1200mA max -> OLED // If you turn this off you'll lose comms to the axp192 because the OLED and the axp192
share the same i2c bus, instead use ssd1306 sleep mode DCDC2 -> unused DCDC3 0.7-3.5V @ 700mA max -> ESP32 (keep this on!) LDO1
30mA -> charges GPS backup battery // charges the tiny J13 battery by the GPS to power the GPS ram (for a couple of days), can
not be turned off LDO2 200mA -> LORA LDO3 200mA -> GPS
*
*/
bool Power::axpChipInit()
{
#ifdef HAS_PMU
if (!PMU) {
PMU = new XPowersAXP2101(Wire, I2C_SDA, I2C_SCL);
if (!PMU->init()) {
DEBUG_MSG("Warning: Failed to find AXP2101 power management\n");
delete PMU;
PMU = NULL;
} else {
DEBUG_MSG("AXP2101 PMU init succeeded, using AXP2101 PMU\n");
}
}
if (!PMU) {
PMU = new XPowersAXP192(Wire, I2C_SDA, I2C_SCL);
if (!PMU->init()) {
DEBUG_MSG("Warning: Failed to find AXP192 power management\n");
delete PMU;
PMU = NULL;
} else {
DEBUG_MSG("AXP192 PMU init succeeded, using AXP192 PMU\n");
}
}
if (!PMU) {
/*
* In XPowersLib, if the XPowersAXPxxx object is released, Wire.end() will be called at the same time.
* In order not to affect other devices, if the initialization of the PMU fails, Wire needs to be re-initialized once,
* if there are multiple devices sharing the bus.
* * */
Wire.begin(I2C_SDA, I2C_SCL);
return false;
}
batteryLevel = PMU;
if (PMU->getChipModel() == XPOWERS_AXP192) {
// lora radio power channel
PMU->setPowerChannelVoltage(XPOWERS_LDO2, 3300);
PMU->enablePowerOutput(XPOWERS_LDO2);
// oled module power channel,
// disable it will cause abnormal communication between boot and AXP power supply,
// do not turn it off
PMU->setPowerChannelVoltage(XPOWERS_DCDC1, 3300);
// enable oled power
PMU->enablePowerOutput(XPOWERS_DCDC1);
// gnss module power channel - now turned on in setGpsPower
PMU->setPowerChannelVoltage(XPOWERS_LDO3, 3300);
// PMU->enablePowerOutput(XPOWERS_LDO3);
//protected oled power source
PMU->setProtectedChannel(XPOWERS_DCDC1);
//protected esp32 power source
PMU->setProtectedChannel(XPOWERS_DCDC3);
//disable not use channel
PMU->disablePowerOutput(XPOWERS_DCDC2);
//disable all axp chip interrupt
PMU->disableIRQ(XPOWERS_AXP192_ALL_IRQ);
// Set constant current charging current
PMU->setChargerConstantCurr(XPOWERS_AXP192_CHG_CUR_450MA);
} else if (PMU->getChipModel() == XPOWERS_AXP2101) {
// t-beam s3 core
/**
* gnss module power channel
* The default ALDO4 is off, you need to turn on the GNSS power first, otherwise it will be invalid during initialization
*/
PMU->setPowerChannelVoltage(XPOWERS_ALDO4, 3300);
PMU->enablePowerOutput(XPOWERS_ALDO4);
// lora radio power channel
PMU->setPowerChannelVoltage(XPOWERS_ALDO3, 3300);
PMU->enablePowerOutput(XPOWERS_ALDO3);
// m.2 interface
PMU->setPowerChannelVoltage(XPOWERS_DCDC3, 3300);
PMU->enablePowerOutput(XPOWERS_DCDC3);
// PMU->setPowerChannelVoltage(XPOWERS_DCDC4, 3300);
// PMU->enablePowerOutput(XPOWERS_DCDC4);
//not use channel
PMU->disablePowerOutput(XPOWERS_DCDC2); //not elicited
PMU->disablePowerOutput(XPOWERS_DCDC5); //not elicited
PMU->disablePowerOutput(XPOWERS_DLDO1); //Invalid power channel, it does not exist
PMU->disablePowerOutput(XPOWERS_DLDO2); //Invalid power channel, it does not exist
PMU->disablePowerOutput(XPOWERS_VBACKUP);
//disable all axp chip interrupt
PMU->disableIRQ(XPOWERS_AXP2101_ALL_IRQ);
//Set the constant current charging current of AXP2101, temporarily use 500mA by default
PMU->setChargerConstantCurr(XPOWERS_AXP2101_CHG_CUR_500MA);
}
PMU->clearIrqStatus();
// TBeam1.1 /T-Beam S3-Core has no external TS detection,
// it needs to be disabled, otherwise it will cause abnormal charging
PMU->disableTSPinMeasure();
// PMU->enableSystemVoltageMeasure();
PMU->enableVbusVoltageMeasure();
PMU->enableBattVoltageMeasure();
DEBUG_MSG("=======================================================================\n");
if (PMU->isChannelAvailable(XPOWERS_DCDC1)) {
DEBUG_MSG("DC1 : %s Voltage:%u mV \n", PMU->isPowerChannelEnable(XPOWERS_DCDC1) ? "+" : "-", PMU->getPowerChannelVoltage(XPOWERS_DCDC1));
}
if (PMU->isChannelAvailable(XPOWERS_DCDC2)) {
DEBUG_MSG("DC2 : %s Voltage:%u mV \n", PMU->isPowerChannelEnable(XPOWERS_DCDC2) ? "+" : "-", PMU->getPowerChannelVoltage(XPOWERS_DCDC2));
}
if (PMU->isChannelAvailable(XPOWERS_DCDC3)) {
DEBUG_MSG("DC3 : %s Voltage:%u mV \n", PMU->isPowerChannelEnable(XPOWERS_DCDC3) ? "+" : "-", PMU->getPowerChannelVoltage(XPOWERS_DCDC3));
}
if (PMU->isChannelAvailable(XPOWERS_DCDC4)) {
DEBUG_MSG("DC4 : %s Voltage:%u mV \n", PMU->isPowerChannelEnable(XPOWERS_DCDC4) ? "+" : "-", PMU->getPowerChannelVoltage(XPOWERS_DCDC4));
}
if (PMU->isChannelAvailable(XPOWERS_LDO2)) {
DEBUG_MSG("LDO2 : %s Voltage:%u mV \n", PMU->isPowerChannelEnable(XPOWERS_LDO2) ? "+" : "-", PMU->getPowerChannelVoltage(XPOWERS_LDO2));
}
if (PMU->isChannelAvailable(XPOWERS_LDO3)) {
DEBUG_MSG("LDO3 : %s Voltage:%u mV \n", PMU->isPowerChannelEnable(XPOWERS_LDO3) ? "+" : "-", PMU->getPowerChannelVoltage(XPOWERS_LDO3));
}
if (PMU->isChannelAvailable(XPOWERS_ALDO1)) {
DEBUG_MSG("ALDO1: %s Voltage:%u mV \n", PMU->isPowerChannelEnable(XPOWERS_ALDO1) ? "+" : "-", PMU->getPowerChannelVoltage(XPOWERS_ALDO1));
}
if (PMU->isChannelAvailable(XPOWERS_ALDO2)) {
DEBUG_MSG("ALDO2: %s Voltage:%u mV \n", PMU->isPowerChannelEnable(XPOWERS_ALDO2) ? "+" : "-", PMU->getPowerChannelVoltage(XPOWERS_ALDO2));
}
if (PMU->isChannelAvailable(XPOWERS_ALDO3)) {
DEBUG_MSG("ALDO3: %s Voltage:%u mV \n", PMU->isPowerChannelEnable(XPOWERS_ALDO3) ? "+" : "-", PMU->getPowerChannelVoltage(XPOWERS_ALDO3));
}
if (PMU->isChannelAvailable(XPOWERS_ALDO4)) {
DEBUG_MSG("ALDO4: %s Voltage:%u mV \n", PMU->isPowerChannelEnable(XPOWERS_ALDO4) ? "+" : "-", PMU->getPowerChannelVoltage(XPOWERS_ALDO4));
}
if (PMU->isChannelAvailable(XPOWERS_BLDO1)) {
DEBUG_MSG("BLDO1: %s Voltage:%u mV \n", PMU->isPowerChannelEnable(XPOWERS_BLDO1) ? "+" : "-", PMU->getPowerChannelVoltage(XPOWERS_BLDO1));
}
if (PMU->isChannelAvailable(XPOWERS_BLDO2)) {
DEBUG_MSG("BLDO2: %s Voltage:%u mV \n", PMU->isPowerChannelEnable(XPOWERS_BLDO2) ? "+" : "-", PMU->getPowerChannelVoltage(XPOWERS_BLDO2));
}
DEBUG_MSG("=======================================================================\n");
//Set up the charging voltage, AXP2101/AXP192 4.2V gear is the same
// XPOWERS_AXP192_CHG_VOL_4V2 = XPOWERS_AXP2101_CHG_VOL_4V2
PMU->setChargeTargetVoltage(XPOWERS_AXP192_CHG_VOL_4V2);
// Set PMU shutdown voltage at 2.6V to maximize battery utilization
PMU->setSysPowerDownVoltage(2600);
#ifdef PMU_IRQ
uint64_t pmuIrqMask = 0;
if (PMU->getChipModel() == XPOWERS_AXP192) {
pmuIrqMask = XPOWERS_AXP192_VBUS_INSERT_IRQ | XPOWERS_AXP192_BAT_INSERT_IRQ | XPOWERS_AXP192_PKEY_SHORT_IRQ;
} else if (PMU->getChipModel() == XPOWERS_AXP2101) {
pmuIrqMask = XPOWERS_AXP2101_VBUS_INSERT_IRQ | XPOWERS_AXP2101_BAT_INSERT_IRQ | XPOWERS_AXP2101_PKEY_SHORT_IRQ;
}
pinMode(PMU_IRQ, INPUT);
attachInterrupt(
PMU_IRQ, [] { pmu_irq = true; }, FALLING);
// we do not look for AXPXXX_CHARGING_FINISHED_IRQ & AXPXXX_CHARGING_IRQ because it occurs repeatedly while there is
// no battery also it could cause inadvertent waking from light sleep just because the battery filled
// we don't look for AXPXXX_BATT_REMOVED_IRQ because it occurs repeatedly while no battery installed
// we don't look at AXPXXX_VBUS_REMOVED_IRQ because we don't have anything hooked to vbus
PMU->enableIRQ(pmuIrqMask);
PMU->clearIrqStatus();
#endif /*PMU_IRQ*/
readPowerStatus();
pmu_found = true;
return pmu_found;
#else
return false;
#endif
}