fix #513 scale retransmission times based on true packet time on wire

1.2-legacy
Kevin Hester 2020-11-14 10:07:25 +08:00
rodzic f346b4f0f2
commit 1839f8f7ca
5 zmienionych plików z 100 dodań i 91 usunięć

Wyświetl plik

@ -143,11 +143,15 @@ bool NodeDB::resetRadioConfig()
DEBUG_MSG("***** DEVELOPMENT MODE - DO NOT RELEASE *****\n");
// Sleep quite frequently to stress test the BLE comms, broadcast position every 6 mins
radioConfig.preferences.screen_on_secs = 30;
radioConfig.preferences.wait_bluetooth_secs = 30;
radioConfig.preferences.screen_on_secs = 10;
radioConfig.preferences.wait_bluetooth_secs = 10;
radioConfig.preferences.position_broadcast_secs = 6 * 60;
radioConfig.preferences.ls_secs = 60;
radioConfig.preferences.region = RegionCode_TW;
// Enter super deep sleep soon and stay there not very long
//radioConfig.preferences.mesh_sds_timeout_secs = 10;
//radioConfig.preferences.sds_secs = 60;
}
// Update the global myRegion

Wyświetl plik

@ -53,57 +53,66 @@ separated by 2.16 MHz with respect to the adjacent channels. Channel zero starts
// 1kb was too small
#define RADIO_STACK_SIZE 4096
/** At the low end we want to pick a delay large enough that anyone who just completed sending (some other node)
* has had enough time to switch their radio back into receive mode.
*/
#define MIN_TX_WAIT_MSEC 100
/**
* At the high end, this value is used to spread node attempts across time so when they are replying to a packet
* they don't both check that the airwaves are clear at the same moment. As long as they are off by some amount
* one of the two will be first to start transmitting and the other will see that. I bet 500ms is more than enough
* to guarantee this.
*/
#define MAX_TX_WAIT_MSEC 2000 // stress test would still fail occasionally with 1000
/**
* Calculate airtime per https://www.rs-online.com/designspark/rel-assets/ds-assets/uploads/knowledge-items/application-notes-for-the-internet-of-things/LoRa%20Design%20Guide.pdf
* Calculate airtime per
* https://www.rs-online.com/designspark/rel-assets/ds-assets/uploads/knowledge-items/application-notes-for-the-internet-of-things/LoRa%20Design%20Guide.pdf
* section 4
*
*
* @return num msecs for the packet
*/
uint32_t RadioInterface::getPacketTime(MeshPacket *p)
uint32_t RadioInterface::getPacketTime(uint32_t pl)
{
assert(p->which_payload == MeshPacket_encrypted_tag); // It should have already been encoded by now
uint8_t sf = 12; // FIXME
uint8_t nPreamble = 32; // FIXME
uint32_t bandwidthHz = 125 * 1000; // FIXME
float bandwidthHz = bw * 1000.0f;
bool headDisable = false; // we currently always use the header
bool lowDataOptEn = false; // FIXME
uint8_t cr = 1; // from 1 to 4
uint32_t pl = p->encrypted.size + sizeof(PacketHeader);
float tSym = (1 << sf) / bandwidthHz;
float tPreamble = (nPreamble + 4.25f) * tSym;
bool lowDataOptEn = tSym > 16e-3 ? true : false; // Needed if symbol time is >16ms
float tPreamble = (preambleLength + 4.25f) * tSym;
float numPayloadSym =
8 + max(ceilf(((8 * pl - 4 * sf + 28 + 16 - 20 * headDisable) / (4 * (sf - 2 * lowDataOptEn))) * (cr + 4)), 0.0f);
8 + max(ceilf(((8.0f * pl - 4 * sf + 28 + 16 - 20 * headDisable) / (4 * (sf - 2 * lowDataOptEn))) * cr), 0.0f);
float tPayload = numPayloadSym * tSym;
float tPacket = tPreamble + tPayload;
uint32_t msecs = tPacket / 1000;
uint32_t msecs = tPacket * 1000;
DEBUG_MSG("(bw=%d, sf=%d, cr=4/%d) packet symLen=%d ms, payloadSize=%u, time %d ms\n", (int)bw, sf, cr, (int)(tSym * 1000),
pl, msecs);
return msecs;
}
uint32_t RadioInterface::getPacketTime(MeshPacket *p)
{
assert(p->which_payload == MeshPacket_encrypted_tag); // It should have already been encoded by now
uint32_t pl = p->encrypted.size + sizeof(PacketHeader);
return getPacketTime(pl);
}
/** The delay to use for retransmitting dropped packets */
uint32_t RadioInterface::getRetransmissionMsec(const MeshPacket *p)
{
return random(20 * 1000L, 22 * 1000L);
// was 20 and 22 secs respectively, but now with shortPacketMsec as 2269, this should give the same range
return random(9 * shortPacketMsec, 10 * shortPacketMsec);
}
/** The delay to use when we want to send something but the ether is busy */
uint32_t RadioInterface::getTxDelayMsec()
{
return random(MIN_TX_WAIT_MSEC, MAX_TX_WAIT_MSEC);
/** At the low end we want to pick a delay large enough that anyone who just completed sending (some other node)
* has had enough time to switch their radio back into receive mode.
*/
const uint32_t MIN_TX_WAIT_MSEC = 100;
/**
* At the high end, this value is used to spread node attempts across time so when they are replying to a packet
* they don't both check that the airwaves are clear at the same moment. As long as they are off by some amount
* one of the two will be first to start transmitting and the other will see that. I bet 500ms is more than enough
* to guarantee this.
*/
// const uint32_t MAX_TX_WAIT_MSEC = 2000; // stress test would still fail occasionally with 1000
return random(MIN_TX_WAIT_MSEC, shortPacketMsec);
}
void printPacket(const char *prefix, const MeshPacket *p)
@ -208,8 +217,47 @@ void RadioInterface::applyModemConfig()
// Set up default configuration
// No Sync Words in LORA mode
if (channelSettings.spread_factor == 0) {
switch (channelSettings.modem_config) {
case ChannelSettings_ModemConfig_Bw125Cr45Sf128: ///< Bw = 125 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on. Default medium
///< range
bw = 125;
cr = 5;
sf = 7;
break;
case ChannelSettings_ModemConfig_Bw500Cr45Sf128: ///< Bw = 500 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on. Fast+short
///< range
bw = 500;
cr = 5;
sf = 7;
break;
case ChannelSettings_ModemConfig_Bw31_25Cr48Sf512: ///< Bw = 31.25 kHz, Cr = 4/8, Sf = 512chips/symbol, CRC on. Slow+long
///< range
bw = 31.25;
cr = 8;
sf = 9;
break;
case ChannelSettings_ModemConfig_Bw125Cr48Sf4096:
bw = 125;
cr = 8;
sf = 12;
break;
default:
assert(0); // Unknown enum
}
} else {
sf = channelSettings.spread_factor;
cr = channelSettings.coding_rate;
bw = channelSettings.bandwidth;
if (bw == 31) // This parameter is not an integer
bw = 31.25;
}
power = channelSettings.tx_power;
shortPacketMsec = getPacketTime(sizeof(PacketHeader));
assert(myRegion); // Should have been found in init
// If user has manually specified a channel num, then use that, otherwise generate one by hashing the name
@ -224,6 +272,7 @@ void RadioInterface::applyModemConfig()
DEBUG_MSG("Radio myRegion->numChannels: %d\n", myRegion->numChannels);
DEBUG_MSG("Radio channel_num: %d\n", channel_num);
DEBUG_MSG("Radio frequency: %f\n", freq);
DEBUG_MSG("Short packet time: %u msec\n", shortPacketMsec);
}
/**

Wyświetl plik

@ -36,7 +36,7 @@ typedef struct {
*
* This defines the SOLE API for talking to radios (because soon we will have alternate radio implementations)
*/
class RadioInterface : public PacketTimes
class RadioInterface
{
friend class MeshRadio; // for debugging we let that class touch pool
PointerQueue<MeshPacket> *rxDest = NULL;
@ -50,7 +50,16 @@ class RadioInterface : public PacketTimes
CallbackObserver<RadioInterface, void *> notifyDeepSleepObserver =
CallbackObserver<RadioInterface, void *>(this, &RadioInterface::notifyDeepSleepCb);
/// Number of msecs we expect our shortest actual packet to be over the wire (used in retry timeout calcs)
uint32_t shortPacketMsec;
protected:
float bw = 125;
uint8_t sf = 9;
uint8_t cr = 7;
uint16_t preambleLength = 32; // 8 is default, but FIXME use longer to increase the amount of sleep time when receiving
MeshPacket *sendingPacket = NULL; // The packet we are currently sending
uint32_t lastTxStart = 0L;
@ -122,6 +131,7 @@ class RadioInterface : public PacketTimes
* @return num msecs for the packet
*/
uint32_t getPacketTime(MeshPacket *p);
uint32_t getPacketTime(uint32_t totalPacketLen);
protected:
int8_t power = 17; // Set by applyModemConfig()

Wyświetl plik

@ -58,50 +58,6 @@ void INTERRUPT_ATTR RadioLibInterface::isrTxLevel0()
*/
RadioLibInterface *RadioLibInterface::instance;
/**
* Convert our modemConfig enum into wf, sf, etc...
*/
void RadioLibInterface::applyModemConfig()
{
RadioInterface::applyModemConfig();
if (channelSettings.spread_factor == 0) {
switch (channelSettings.modem_config) {
case ChannelSettings_ModemConfig_Bw125Cr45Sf128: ///< Bw = 125 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on. Default medium
///< range
bw = 125;
cr = 5;
sf = 7;
break;
case ChannelSettings_ModemConfig_Bw500Cr45Sf128: ///< Bw = 500 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on. Fast+short
///< range
bw = 500;
cr = 5;
sf = 7;
break;
case ChannelSettings_ModemConfig_Bw31_25Cr48Sf512: ///< Bw = 31.25 kHz, Cr = 4/8, Sf = 512chips/symbol, CRC on. Slow+long
///< range
bw = 31.25;
cr = 8;
sf = 9;
break;
case ChannelSettings_ModemConfig_Bw125Cr48Sf4096:
bw = 125;
cr = 8;
sf = 12;
break;
default:
assert(0); // Unknown enum
}
} else {
sf = channelSettings.spread_factor;
cr = channelSettings.coding_rate;
bw = channelSettings.bandwidth;
if (bw == 31) // This parameter is not an integer
bw = 31.25;
}
}
/** Could we send right now (i.e. either not actively receving or transmitting)? */
bool RadioLibInterface::canSendImmediately()
@ -130,6 +86,8 @@ ErrorCode RadioLibInterface::send(MeshPacket *p)
// Sometimes when testing it is useful to be able to never turn on the xmitter
#ifndef LORA_DISABLE_SENDING
printPacket("enqueuing for send", p);
uint32_t xmitMsec = getPacketTime(p);
DEBUG_MSG("txGood=%d,rxGood=%d,rxBad=%d\n", txGood, rxGood, rxBad);
ErrorCode res = txQueue.enqueue(p, 0) ? ERRNO_OK : ERRNO_UNKNOWN;
@ -158,7 +116,6 @@ bool RadioLibInterface::canSleep()
return res;
}
/** radio helper thread callback.
We never immediately transmit after any operation (either rx or tx). Instead we should start receiving and
@ -214,7 +171,7 @@ void RadioLibInterface::startTransmitTimer(bool withDelay)
{
// If we have work to do and the timer wasn't already scheduled, schedule it now
if (!txQueue.isEmpty()) {
uint32_t delay = !withDelay ? 1 : getTxDelayMsec();
uint32_t delay = !withDelay ? 1 : getTxDelayMsec();
// DEBUG_MSG("xmit timer %d\n", delay);
notifyLater(delay, TRANSMIT_DELAY_COMPLETED, false); // This will implicitly enable
}
@ -225,7 +182,7 @@ void RadioLibInterface::handleTransmitInterrupt()
// DEBUG_MSG("handling lora TX interrupt\n");
// This can be null if we forced the device to enter standby mode. In that case
// ignore the transmit interrupt
if(sendingPacket)
if (sendingPacket)
completeSending();
}
@ -287,7 +244,7 @@ void RadioLibInterface::handleReceiveInterrupt()
addReceiveMetadata(mp);
mp->which_payload = MeshPacket_encrypted_tag; // Mark that the payload is still encrypted at this point
assert(payloadLen <= sizeof(mp->encrypted.bytes));
assert(((uint32_t) payloadLen) <= sizeof(mp->encrypted.bytes));
memcpy(mp->encrypted.bytes, payload, payloadLen);
mp->encrypted.size = payloadLen;

Wyświetl plik

@ -77,9 +77,6 @@ class RadioLibInterface : public RadioInterface, protected concurrency::Notified
PointerQueue<MeshPacket> txQueue = PointerQueue<MeshPacket>(MAX_TX_QUEUE);
protected:
float bw = 125;
uint8_t sf = 9;
uint8_t cr = 7;
/**
* FIXME, use a meshtastic sync word, but hashed with the Channel name. Currently picking the same default
@ -88,7 +85,6 @@ class RadioLibInterface : public RadioInterface, protected concurrency::Notified
uint8_t syncWord = SX126X_SYNC_WORD_PRIVATE;
float currentLimit = 100; // FIXME
uint16_t preambleLength = 32; // 8 is default, but FIXME use longer to increase the amount of sleep time when receiving
LockingModule module; // The HW interface to the radio
@ -165,13 +161,6 @@ class RadioLibInterface : public RadioInterface, protected concurrency::Notified
/** Do any hardware setup needed on entry into send configuration for the radio. Subclasses can customize */
virtual void configHardwareForSend() {}
/**
* Convert our modemConfig enum into wf, sf, etc...
*
* These paramaters will be pull from the channelSettings global
*/
virtual void applyModemConfig();
/** Could we send right now (i.e. either not actively receiving or transmitting)? */
virtual bool canSendImmediately();