kopia lustrzana https://github.com/thinkst/zippy
				
				
				
			
		
			
				
	
	
		
			141 wiersze
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Python
		
	
	
			
		
		
	
	
			141 wiersze
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Python
		
	
	
| #!/usr/bin/env python3
 | |
| 
 | |
| import pytest, os, jsonlines
 | |
| from warnings import warn
 | |
| from roberta_detect import run_on_file_chunked, run_on_text_chunked
 | |
| 
 | |
| AI_SAMPLE_DIR = 'samples/llm-generated/'
 | |
| HUMAN_SAMPLE_DIR = 'samples/human-generated/'
 | |
| 
 | |
| MIN_LEN = 150
 | |
| NUM_JSONL_SAMPLES = 500
 | |
| 
 | |
| ai_files = os.listdir(AI_SAMPLE_DIR)
 | |
| human_files = os.listdir(HUMAN_SAMPLE_DIR)
 | |
| 
 | |
| CONFIDENCE_THRESHOLD : float = 0.00 # What confidence to treat as error vs warning
 | |
| 
 | |
| def test_training_file(record_property):
 | |
|     (classification, score) = run_on_file_chunked('ai-generated.txt')
 | |
|     record_property("score", str(score))
 | |
|     assert classification == 'AI', 'The training corpus should always be detected as AI-generated... since it is (score: ' + str(round(score, 8)) + ')'
 | |
| 
 | |
| @pytest.mark.parametrize('f', human_files)
 | |
| def test_human_samples(f, record_property):
 | |
|     (classification, score) = run_on_file_chunked(HUMAN_SAMPLE_DIR + f)
 | |
|     record_property("score", str(score))
 | |
|     if score > CONFIDENCE_THRESHOLD:
 | |
|         assert classification == 'Human', f + ' is a human-generated file, misclassified as AI-generated with confidence ' + str(round(score, 8))
 | |
|     else:
 | |
|         if classification != 'Human':
 | |
|             warn("Misclassified " + f + " with score of: " + str(round(score, 8)))
 | |
|         else:
 | |
|             warn("Unable to confidently classify: " + f)
 | |
| 
 | |
| @pytest.mark.parametrize('f', ai_files)
 | |
| def test_llm_sample(f, record_property):
 | |
|    (classification, score) = run_on_file_chunked(AI_SAMPLE_DIR + f)
 | |
|    record_property("score", str(score))
 | |
|    if score > CONFIDENCE_THRESHOLD:
 | |
|        assert classification == 'AI', f + ' is an LLM-generated file, misclassified as human-generated with confidence ' + str(round(score, 8))
 | |
|    else:
 | |
|        if classification != 'AI':
 | |
|            warn("Misclassified " + f + " with score of: " + str(round(score, 8)))
 | |
|        else:
 | |
|            warn("Unable to confidently classify: " + f)
 | |
| 
 | |
| HUMAN_JSONL_FILE = 'samples/webtext.test.jsonl'
 | |
| human_samples = []
 | |
| with jsonlines.open(HUMAN_JSONL_FILE) as reader:
 | |
|     for obj in reader:
 | |
|         human_samples.append(obj)
 | |
| 
 | |
| @pytest.mark.parametrize('i', human_samples[0:NUM_JSONL_SAMPLES])
 | |
| def test_human_jsonl(i, record_property):
 | |
|     (classification, score) = run_on_text_chunked(i.get('text', ''))
 | |
|     record_property("score", str(score))
 | |
|     assert classification == 'Human', HUMAN_JSONL_FILE + ':' + str(i.get('id')) + ' (len: ' + str(i.get('length', -1)) + ') is a human-generated sample, misclassified as AI-generated with confidence ' + str(round(score, 8))
 | |
| 
 | |
| AI_JSONL_FILE = 'samples/xl-1542M.test.jsonl'
 | |
| ai_samples = []
 | |
| with jsonlines.open(AI_JSONL_FILE) as reader:
 | |
|     for obj in reader:
 | |
|         ai_samples.append(obj)
 | |
| 
 | |
| @pytest.mark.parametrize('i', ai_samples[0:NUM_JSONL_SAMPLES])
 | |
| def test_llm_jsonl(i, record_property):
 | |
|     (classification, score) = run_on_text_chunked(i.get('text', ''))
 | |
|     record_property("score", str(score))
 | |
|     assert classification == 'AI', AI_JSONL_FILE + ':' + str(i.get('id')) + ' (text: ' + i.get('text', "").replace('\n', ' ')[:50] + ') is an LLM-generated sample, misclassified as human-generated with confidence ' + str(round(score, 8))
 | |
| 
 | |
| GPT3_JSONL_FILE = 'samples/GPT-3-175b_samples.jsonl'
 | |
| gpt3_samples = []
 | |
| with jsonlines.open(GPT3_JSONL_FILE) as reader:
 | |
|     for o in reader:
 | |
|         for l in o.split('<|endoftext|>'):
 | |
|             if len(l) >= MIN_LEN:
 | |
|                 gpt3_samples.append(l)
 | |
| 
 | |
| @pytest.mark.parametrize('i', gpt3_samples[0:NUM_JSONL_SAMPLES])
 | |
| def test_gpt3_jsonl(i, record_property):
 | |
|     (classification, score) = run_on_text_chunked(i)
 | |
|     record_property("score", str(score))
 | |
|     assert classification == 'AI', GPT3_JSONL_FILE + ' is an LLM-generated sample, misclassified as human-generated with confidence ' + str(round(score, 8))
 | |
| 
 | |
| NEWS_JSONL_FILE = 'samples/news.jsonl'
 | |
| news_samples = []
 | |
| with jsonlines.open(NEWS_JSONL_FILE) as reader:
 | |
|     for obj in reader:
 | |
|         news_samples.append(obj)
 | |
| 
 | |
| @pytest.mark.parametrize('i', news_samples[0:NUM_JSONL_SAMPLES])
 | |
| def test_humannews_jsonl(i, record_property):
 | |
|     (classification, score) = run_on_text_chunked(i.get('human', ''))
 | |
|     record_property("score", str(score))
 | |
|     assert classification == 'Human', NEWS_JSONL_FILE + ' is a human-generated sample, misclassified as AI-generated with confidence ' + str(round(score, 8))
 | |
| 
 | |
| @pytest.mark.parametrize('i', news_samples[0:NUM_JSONL_SAMPLES])
 | |
| def test_chatgptnews_jsonl(i, record_property):
 | |
|     (classification, score) = run_on_text_chunked(i.get('chatgpt', ''))
 | |
|     record_property("score", str(score))
 | |
|     assert classification == 'AI', NEWS_JSONL_FILE + ' is a AI-generated sample, misclassified as human-generated with confidence ' + str(round(score, 8))
 | |
| 
 | |
| CHEAT_HUMAN_JSONL_FILE = 'samples/ieee-init.jsonl'
 | |
| ch_samples = []
 | |
| with jsonlines.open(CHEAT_HUMAN_JSONL_FILE) as reader:
 | |
|     for obj in reader:
 | |
|         if len(obj.get('abstract', '')) >= MIN_LEN:
 | |
|             ch_samples.append(obj)
 | |
| 
 | |
| @pytest.mark.parametrize('i', ch_samples[0:NUM_JSONL_SAMPLES])
 | |
| def test_cheat_human_jsonl(i, record_property):
 | |
|     (classification, score) = run_on_text_chunked(i.get('abstract', ''))
 | |
|     record_property("score", str(score))
 | |
|     assert classification == 'Human', CHEAT_HUMAN_JSONL_FILE + ':' + str(i.get('id')) + ' [' + str(len(i.get('abstract', ''))) + '] (title: ' + i.get('title', "").replace('\n', ' ')[:15] + ') is a human-generated sample, misclassified as AI-generated with confidence ' + str(round(score, 8))
 | |
| 
 | |
| CHEAT_GEN_JSONL_FILE = 'samples/ieee-chatgpt-generation.jsonl'
 | |
| cg_samples = []
 | |
| with jsonlines.open(CHEAT_GEN_JSONL_FILE) as reader:
 | |
|     for obj in reader:
 | |
|         if len(obj.get('abstract', '')) >= MIN_LEN:
 | |
|             cg_samples.append(obj)
 | |
| 
 | |
| @pytest.mark.parametrize('i', cg_samples[0:NUM_JSONL_SAMPLES])
 | |
| def test_cheat_generation_jsonl(i, record_property):
 | |
|     (classification, score) = run_on_text_chunked(i.get('abstract', ''))
 | |
|     record_property("score", str(score))
 | |
|     assert classification == 'AI', CHEAT_GEN_JSONL_FILE + ':' + str(i.get('id')) + ' (title: ' + i.get('title', "").replace('\n', ' ')[:50] + ') is an LLM-generated sample, misclassified as human-generated with confidence ' + str(round(score, 8))
 | |
| 
 | |
| CHEAT_POLISH_JSONL_FILE = 'samples/ieee-chatgpt-polish.jsonl'
 | |
| cp_samples = []
 | |
| with jsonlines.open(CHEAT_POLISH_JSONL_FILE) as reader:
 | |
|     for obj in reader:
 | |
|         if len(obj.get('abstract', '')) >= MIN_LEN:
 | |
|             cp_samples.append(obj)
 | |
| 
 | |
| @pytest.mark.parametrize('i', cp_samples[0:NUM_JSONL_SAMPLES])
 | |
| def test_cheat_polish_jsonl(i, record_property):
 | |
|     (classification, score) = run_on_text_chunked(i.get('abstract', ''))
 | |
|     record_property("score", str(score))
 | |
|     assert classification == 'AI', CHEAT_POLISH_JSONL_FILE + ':' + str(i.get('id')) + ' (title: ' + i.get('title', "").replace('\n', ' ')[:50] + ') is an LLM-generated sample, misclassified as human-generated with confidence ' + str(round(score, 8))
 |