kopia lustrzana https://github.com/thinkst/zippy
				
				
				
			
		
			
				
	
	
		
			197 wiersze
		
	
	
		
			9.8 KiB
		
	
	
	
		
			Python
		
	
	
			
		
		
	
	
			197 wiersze
		
	
	
		
			9.8 KiB
		
	
	
	
		
			Python
		
	
	
| #!/usr/bin/env python3
 | |
| 
 | |
| import pytest, os, jsonlines, csv
 | |
| from warnings import warn
 | |
| from zippy.zippy import Zippy, EnsembledZippy, PRELUDE_STR, LzmaLlmDetector, BrotliLlmDetector, ZlibLlmDetector, CompressionEngine
 | |
| import zippy.zippy
 | |
| 
 | |
| AI_SAMPLE_DIR = 'samples/llm-generated/'
 | |
| HUMAN_SAMPLE_DIR = 'samples/human-generated/'
 | |
| 
 | |
| MIN_LEN = 150
 | |
| NUM_JSONL_SAMPLES = 500
 | |
| 
 | |
| ai_files = os.listdir(AI_SAMPLE_DIR)
 | |
| human_files = os.listdir(HUMAN_SAMPLE_DIR)
 | |
| 
 | |
| CONFIDENCE_THRESHOLD : float = 0.00 # What confidence to treat as error vs warning
 | |
| 
 | |
| # Bool on whether to ensemble the models or run a single model
 | |
| ENSEMBLE = True
 | |
| 
 | |
| if not ENSEMBLE:
 | |
|     # What compression engine to use for the test
 | |
|     ENGINE = CompressionEngine.LZMA
 | |
| 
 | |
|     if ENGINE == CompressionEngine.LZMA:
 | |
|         PRELUDE_RATIO = LzmaLlmDetector(prelude_str=PRELUDE_STR).prelude_ratio
 | |
|     elif ENGINE == CompressionEngine.ZLIB:
 | |
|         PRELUDE_RATIO = ZlibLlmDetector(prelude_str=PRELUDE_STR).prelude_ratio
 | |
|     elif ENGINE == CompressionEngine.BROTLI:
 | |
|         PRELUDE_RATIO = BrotliLlmDetector(prelude_str=PRELUDE_STR).prelude_ratio
 | |
| 
 | |
|     zippy = Zippy(ENGINE)
 | |
| 
 | |
| else:
 | |
|     zippy = EnsembledZippy()
 | |
|     PRELUDE_RATIO = None
 | |
| 
 | |
| def test_training_file(record_property):
 | |
|     (classification, score) = zippy.run_on_file_chunked('zippy/ai-generated.txt')
 | |
|     record_property("score", str(score))
 | |
|     assert classification == 'AI', 'The training corpus should always be detected as AI-generated... since it is'
 | |
| 
 | |
| @pytest.mark.parametrize('f', human_files)
 | |
| def test_human_samples(f, record_property):
 | |
|     (classification, score) = zippy.run_on_file_chunked(HUMAN_SAMPLE_DIR + f, prelude_ratio=PRELUDE_RATIO)
 | |
|     record_property("score", str(score))
 | |
|     if score > CONFIDENCE_THRESHOLD:
 | |
|         assert classification == 'Human', f + ' is a human-generated file, misclassified as AI-generated with confidence ' + str(round(score, 8))
 | |
|     else:
 | |
|         if classification != 'Human':
 | |
|             warn("Misclassified " + f + " with score of: " + str(round(score, 8)))
 | |
|         else:
 | |
|             warn("Unable to confidently classify: " + f)
 | |
| 
 | |
| @pytest.mark.parametrize('f', ai_files)
 | |
| def test_llm_sample(f, record_property):
 | |
|    (classification, score) = zippy.run_on_file_chunked(AI_SAMPLE_DIR + f, prelude_ratio=PRELUDE_RATIO)
 | |
|    record_property("score", str(score))
 | |
|    if score > CONFIDENCE_THRESHOLD:
 | |
|        assert classification == 'AI', f + ' is an LLM-generated file, misclassified as human-generated with confidence ' + str(round(score, 8))
 | |
|    else:
 | |
|        if classification != 'AI':
 | |
|            warn("Misclassified " + f + " with score of: " + str(round(score, 8)))
 | |
|        else:
 | |
|            warn("Unable to confidently classify: " + f)
 | |
| 
 | |
| HUMAN_JSONL_FILE = 'samples/webtext.test.jsonl'
 | |
| human_samples = []
 | |
| with jsonlines.open(HUMAN_JSONL_FILE) as reader:
 | |
|     for obj in reader:
 | |
|         if obj.get('length', 0) >= MIN_LEN:
 | |
|             human_samples.append(obj)
 | |
| 
 | |
| @pytest.mark.parametrize('i', human_samples[0:NUM_JSONL_SAMPLES])
 | |
| def test_human_jsonl(i, record_property):
 | |
|     (classification, score) = zippy.run_on_text_chunked(i.get('text', ''), prelude_ratio=PRELUDE_RATIO)
 | |
|     record_property("score", str(score))
 | |
|     assert classification == 'Human', HUMAN_JSONL_FILE + ':' + str(i.get('id')) + ' (len: ' + str(i.get('length', -1)) + ') is a human-generated sample, misclassified as AI-generated with confidence ' + str(round(score, 8))
 | |
| 
 | |
| # AI_JSONL_FILE = 'samples/xl-1542M.test.jsonl'
 | |
| # ai_samples = []
 | |
| # with jsonlines.open(AI_JSONL_FILE) as reader:
 | |
| #     for obj in reader:
 | |
| #         if obj.get('length', 0) >= MIN_LEN:
 | |
| #             ai_samples.append(obj)
 | |
| 
 | |
| # @pytest.mark.parametrize('i', ai_samples[0:NUM_JSONL_SAMPLES])
 | |
| # def test_gpt2_jsonl(i, record_property):
 | |
| #     (classification, score) = run_on_text_chunked(i.get('text', ''), prelude_ratio=PRELUDE_RATIO)
 | |
| #     record_property("score", str(score))
 | |
| #     assert classification == 'AI', AI_JSONL_FILE + ':' + str(i.get('id')) + ' (text: ' + i.get('text', "").replace('\n', ' ')[:50] + ') is an LLM-generated sample, misclassified as human-generated with confidence ' + str(round(score, 8))
 | |
| 
 | |
| # GPT3_JSONL_FILE = 'samples/GPT-3-175b_samples.jsonl'
 | |
| # gpt3_samples = []
 | |
| # with jsonlines.open(GPT3_JSONL_FILE) as reader:
 | |
| #     for o in reader:
 | |
| #         for l in o.split('<|endoftext|>'):
 | |
| #             if len(l) >= MIN_LEN:
 | |
| #                 gpt3_samples.append(l)
 | |
| 
 | |
| # @pytest.mark.parametrize('i', gpt3_samples[0:NUM_JSONL_SAMPLES])
 | |
| # def test_gpt3_jsonl(i, record_property):
 | |
| #     (classification, score) = run_on_text_chunked(i, prelude_ratio=PRELUDE_RATIO)
 | |
| #     record_property("score", str(score))
 | |
| #     assert classification == 'AI', GPT3_JSONL_FILE + ' is an LLM-generated sample, misclassified as human-generated with confidence ' + str(round(score, 8))
 | |
| 
 | |
| NEWS_JSONL_FILE = 'samples/news.jsonl'
 | |
| news_samples = []
 | |
| with jsonlines.open(NEWS_JSONL_FILE) as reader:
 | |
|     for obj in reader:
 | |
|         news_samples.append(obj)
 | |
| 
 | |
| @pytest.mark.parametrize('i', news_samples[0:NUM_JSONL_SAMPLES])
 | |
| def test_humannews_jsonl(i, record_property):
 | |
|     (classification, score) = zippy.run_on_text_chunked(i.get('human', ''), prelude_ratio=PRELUDE_RATIO)
 | |
|     record_property("score", str(score))
 | |
|     assert classification == 'Human', NEWS_JSONL_FILE + ' is a human-generated sample, misclassified as AI-generated with confidence ' + str(round(score, 8))
 | |
| 
 | |
| @pytest.mark.parametrize('i', news_samples[0:NUM_JSONL_SAMPLES])
 | |
| def test_chatgptnews_jsonl(i, record_property):
 | |
|     (classification, score) = zippy.run_on_text_chunked(i.get('chatgpt', ''), prelude_ratio=PRELUDE_RATIO)
 | |
|     record_property("score", str(score))
 | |
|     assert classification == 'AI', NEWS_JSONL_FILE + ' is a AI-generated sample, misclassified as human-generated with confidence ' + str(round(score, 8))
 | |
| 
 | |
| CHEAT_HUMAN_JSONL_FILE = 'samples/ieee-init.jsonl'
 | |
| ch_samples = []
 | |
| with jsonlines.open(CHEAT_HUMAN_JSONL_FILE) as reader:
 | |
|     for obj in reader:
 | |
|         if len(obj.get('abstract', '')) >= MIN_LEN:
 | |
|             ch_samples.append(obj)
 | |
| 
 | |
| @pytest.mark.parametrize('i', ch_samples[0:NUM_JSONL_SAMPLES])
 | |
| def test_cheat_human_jsonl(i, record_property):
 | |
|     (classification, score) = zippy.run_on_text_chunked(i.get('abstract', ''), prelude_ratio=PRELUDE_RATIO)
 | |
|     record_property("score", str(score))
 | |
|     assert classification == 'Human', CHEAT_HUMAN_JSONL_FILE + ':' + str(i.get('id')) + ' [' + str(len(i.get('abstract', ''))) + '] (title: ' + i.get('title', "").replace('\n', ' ')[:15] + ') is a human-generated sample, misclassified as AI-generated with confidence ' + str(round(score, 8))
 | |
| 
 | |
| CHEAT_GEN_JSONL_FILE = 'samples/ieee-chatgpt-generation.jsonl'
 | |
| cg_samples = []
 | |
| with jsonlines.open(CHEAT_GEN_JSONL_FILE) as reader:
 | |
|     for obj in reader:
 | |
|         if len(obj.get('abstract', '')) >= MIN_LEN:
 | |
|             cg_samples.append(obj)
 | |
| 
 | |
| @pytest.mark.parametrize('i', cg_samples[0:NUM_JSONL_SAMPLES])
 | |
| def test_cheat_generation_jsonl(i, record_property):
 | |
|     (classification, score) = zippy.run_on_text_chunked(i.get('abstract', ''), prelude_ratio=PRELUDE_RATIO)
 | |
|     record_property("score", str(score))
 | |
|     assert classification == 'AI', CHEAT_GEN_JSONL_FILE + ':' + str(i.get('id')) + ' (title: ' + i.get('title', "").replace('\n', ' ')[:50] + ') is an LLM-generated sample, misclassified as human-generated with confidence ' + str(round(score, 8))
 | |
| 
 | |
| CHEAT_POLISH_JSONL_FILE = 'samples/ieee-chatgpt-polish.jsonl'
 | |
| cp_samples = []
 | |
| with jsonlines.open(CHEAT_POLISH_JSONL_FILE) as reader:
 | |
|     for obj in reader:
 | |
|         if len(obj.get('abstract', '')) >= MIN_LEN:
 | |
|             cp_samples.append(obj)
 | |
| 
 | |
| @pytest.mark.parametrize('i', cp_samples[0:NUM_JSONL_SAMPLES])
 | |
| def test_cheat_polish_jsonl(i, record_property):
 | |
|     (classification, score) = zippy.run_on_text_chunked(i.get('abstract', ''), prelude_ratio=PRELUDE_RATIO)
 | |
|     record_property("score", str(score))
 | |
|     assert classification == 'AI', CHEAT_POLISH_JSONL_FILE + ':' + str(i.get('id')) + ' (title: ' + i.get('title', "").replace('\n', ' ')[:50] + ') is an LLM-generated sample, misclassified as human-generated with confidence ' + str(round(score, 8))
 | |
| 
 | |
| CHEAT_VICUNAGEN_JSONL_FILE = 'samples/ieee-vicuna-generation.jsonl'
 | |
| vg_samples = []
 | |
| with jsonlines.open(CHEAT_VICUNAGEN_JSONL_FILE) as reader:
 | |
|     for obj in reader:
 | |
|         if len(obj.get('abstract', '')) >= MIN_LEN:
 | |
|             vg_samples.append(obj)
 | |
| 
 | |
| @pytest.mark.parametrize('i', vg_samples[0:NUM_JSONL_SAMPLES])
 | |
| def test_vicuna_generation_jsonl(i, record_property):
 | |
|     (classification, score) = zippy.run_on_text_chunked(i.get('abstract', ''), prelude_ratio=PRELUDE_RATIO)
 | |
|     record_property("score", str(score))
 | |
|     assert classification == 'AI', CHEAT_VICUNAGEN_JSONL_FILE + ':' + str(i.get('id')) + ' (title: ' + i.get('title', "").replace('\n', ' ')[:50] + ') is an LLM-generated sample, misclassified as human-generated with confidence ' + str(round(score, 8))
 | |
| 
 | |
| GPTZERO_EVAL_FILE = 'samples/gptzero_eval.csv'
 | |
| ge_samples = []
 | |
| with open(GPTZERO_EVAL_FILE) as fp:
 | |
|     csvr = csv.DictReader(fp)
 | |
|     for obj in csvr:
 | |
|         if len(obj.get('Document', '')) >= MIN_LEN:
 | |
|             ge_samples.append(obj)
 | |
| 
 | |
| @pytest.mark.parametrize('i', list(filter(lambda x: x.get('Label') == 'Human', ge_samples[0:NUM_JSONL_SAMPLES])))
 | |
| def test_gptzero_eval_dataset_human(i, record_property):
 | |
|     (classification, score) = zippy.run_on_text_chunked(i.get('Document', ''), prelude_ratio=PRELUDE_RATIO)
 | |
|     record_property("score", str(score))
 | |
|     assert classification == i.get('Label'), GPTZERO_EVAL_FILE + ':' + str(i.get('Index')) + ' was misclassified with confidence ' + str(round(score, 8))
 | |
| 
 | |
| @pytest.mark.parametrize('i', list(filter(lambda x: x.get('Label') == 'AI', ge_samples[0:NUM_JSONL_SAMPLES])))
 | |
| def test_gptzero_eval_dataset_ai(i, record_property):
 | |
|     (classification, score) = zippy.run_on_text_chunked(i.get('Document', ''), prelude_ratio=PRELUDE_RATIO)
 | |
|     record_property("score", str(score))
 | |
|     assert classification == i.get('Label'), GPTZERO_EVAL_FILE + ':' + str(i.get('Index')) + ' was misclassified with confidence ' + str(round(score, 8))
 |