#!/usr/bin/env python3 import httpx, re, os, time, urllib.parse from typing import Optional, Dict, Tuple API_URL = 'https://contentatscale.ai/ai-content-detector/' def make_req(text : str) -> Optional[str]: headers = { 'Origin': 'https://contentatscale.ai', 'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8', # 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/117.0', 'X-Requested-With': 'XMLHttpRequest', 'DNT': '1', 'Connection': 'keep-alive', 'Accept': '*/*', 'Referer': 'https://contentatscale.ai/ai-content-detector/' } data = 'content=' + urllib.parse.quote_plus(text) + '&action=checkaiscore' c = httpx.Client(http2=True, timeout=60.0) res = c.post(API_URL, headers=headers, data=data) if res.status_code != 200: print(res.text) return None if res.json().get('status') == 'Failure': print(res.json()) return None return res.json().get('score') def classify_text(s : str) -> Optional[Tuple[str, float]]: res = int(make_req(s)) / 100.0 if res is None: print("Unable to classify!") return None else: #print(res) try: res = float(res) except TypeError as e: print("Unable to convert " + str(res) + " to float!") if res < 0.5: return ('AI', 1 - res) else: return ('Human', res) def run_on_file_chunked(filename : str, chunk_size : int = 3000) -> Optional[Tuple[str, float]]: ''' Given a filename (and an optional chunk size) returns the score for the contents of that file. This function chunks the file into at most chunk_size parts to score separately, then returns an average. This prevents a very large input overwhelming the model. ''' with open(filename, 'r') as fp: contents = fp.read() return run_on_text_chunked(contents, chunk_size) def run_on_text_chunked(contents : str, chunk_size : int = 3000) -> Optional[Tuple[str, float]]: ''' Given a text (and an optional chunk size) returns the score for the contents of that string. This function chunks the string into at most chunk_size parts to score separately, then returns an average. This prevents a very large input overwhelming the model. ''' # Remove extra spaces and duplicate newlines. contents = re.sub(' +', ' ', contents) contents = re.sub('\t', '', contents) contents = re.sub('\n+', '\n', contents) contents = re.sub('\n ', '\n', contents) res = classify_text(contents) if res is None: time.sleep(5) res = classify_text(contents) return res start = 0 end = 0 chunks = [] while start + chunk_size < len(contents) and end != -1: end = contents.rfind(' ', start, start + chunk_size + 1) chunks.append(contents[start:end]) start = end + 1 chunks.append(contents[start:]) scores = [] for c in chunks: scores.append(classify_text(c)) ssum : float = 0.0 for s in scores: if s[0] == 'AI': ssum -= s[1] else: ssum += s[1] sa : float = ssum / len(scores) if sa < 0: return ('AI', abs(sa)) else: return ('Human', abs(sa))