kopia lustrzana https://github.com/thinkst/zippy
Added code to use roberta-openai-detector to compare results against
Signed-off-by: Jacob Torrey <jacob@thinkst.com>pull/6/head
rodzic
524279a09a
commit
bab771c53a
|
|
@ -0,0 +1,47 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
# HuggingFace API test harness
|
||||
|
||||
import re
|
||||
from typing import Optional, Tuple
|
||||
|
||||
from roberta_local import classify_text
|
||||
|
||||
def run_on_file_chunked(filename : str, chunk_size : int = 1024, fuzziness : int = 3) -> Optional[Tuple[str, float]]:
|
||||
'''
|
||||
Given a filename (and an optional chunk size) returns the score for the contents of that file.
|
||||
This function chunks the file into at most chunk_size parts to score separately, then returns an average. This prevents a very large input
|
||||
overwhelming the model.
|
||||
'''
|
||||
with open(filename, 'r') as fp:
|
||||
contents = fp.read()
|
||||
|
||||
# Remove extra spaces and duplicate newlines.
|
||||
contents = re.sub(' +', ' ', contents)
|
||||
contents = re.sub('\t', '', contents)
|
||||
contents = re.sub('\n+', '\n', contents)
|
||||
contents = re.sub('\n ', '\n', contents)
|
||||
|
||||
start = 0
|
||||
end = 0
|
||||
chunks = []
|
||||
while start + chunk_size < len(contents) and end != -1:
|
||||
end = contents.rfind(' ', start, start + chunk_size + 1)
|
||||
chunks.append(contents[start:end])
|
||||
start = end + 1
|
||||
chunks.append(contents[start:])
|
||||
scores = []
|
||||
for c in chunks:
|
||||
scores.append(classify_text(c))
|
||||
ssum : float = 0.0
|
||||
for s in scores:
|
||||
if s[0] == 'AI':
|
||||
ssum -= s[1]
|
||||
else:
|
||||
ssum += s[1]
|
||||
sa : float = ssum / len(scores)
|
||||
if sa < 0:
|
||||
return ('AI', abs(sa))
|
||||
else:
|
||||
return ('Human', abs(sa))
|
||||
|
||||
|
|
@ -0,0 +1,17 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
||||
import torch
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("roberta-base-openai-detector")
|
||||
model = AutoModelForSequenceClassification.from_pretrained("roberta-base-openai-detector")
|
||||
|
||||
def classify_text(s : str):
|
||||
inputs = tokenizer(s, return_tensors='pt')
|
||||
with torch.no_grad():
|
||||
logits = model(**inputs).logits
|
||||
pc = model.config.id2label[logits.argmax().item()]
|
||||
conf = max(torch.softmax(logits, dim=1).tolist()[0])
|
||||
if pc == 'Real':
|
||||
return ('Human', conf)
|
||||
return ('AI', conf)
|
||||
|
|
@ -0,0 +1,39 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
import pytest, os
|
||||
from warnings import warn
|
||||
from roberta_detect import run_on_file_chunked
|
||||
|
||||
AI_SAMPLE_DIR = 'samples/llm-generated/'
|
||||
HUMAN_SAMPLE_DIR = 'samples/human-generated/'
|
||||
|
||||
ai_files = os.listdir(AI_SAMPLE_DIR)
|
||||
human_files = os.listdir(HUMAN_SAMPLE_DIR)
|
||||
|
||||
CONFIDENCE_THRESHOLD : float = 0.00 # What confidence to treat as error vs warning
|
||||
|
||||
def test_training_file():
|
||||
(classification, score) = run_on_file_chunked('ai-generated.txt')
|
||||
assert classification == 'AI', 'The training corpus should always be detected as AI-generated... since it is (score: ' + str(round(score, 8)) + ')'
|
||||
|
||||
@pytest.mark.parametrize('f', human_files)
|
||||
def test_human_samples(f):
|
||||
(classification, score) = run_on_file_chunked(HUMAN_SAMPLE_DIR + f)
|
||||
if score > CONFIDENCE_THRESHOLD:
|
||||
assert classification == 'Human', f + ' is a human-generated file, misclassified as AI-generated with confidence ' + str(round(score, 8))
|
||||
else:
|
||||
if classification != 'Human':
|
||||
warn("Misclassified " + f + " with score of: " + str(round(score, 8)))
|
||||
else:
|
||||
warn("Unable to confidently classify: " + f)
|
||||
|
||||
@pytest.mark.parametrize('f', ai_files)
|
||||
def test_llm_sample(f):
|
||||
(classification, score) = run_on_file_chunked(AI_SAMPLE_DIR + f)
|
||||
if score > CONFIDENCE_THRESHOLD:
|
||||
assert classification == 'AI', f + ' is an LLM-generated file, misclassified as human-generated with confidence ' + str(round(score, 8))
|
||||
else:
|
||||
if classification != 'AI':
|
||||
warn("Misclassified " + f + " with score of: " + str(round(score, 8)))
|
||||
else:
|
||||
warn("Unable to confidently classify: " + f)
|
||||
Ładowanie…
Reference in New Issue