Added initial crossplag harness

Signed-off-by: Jacob Torrey <jacob@thinkst.com>
pull/6/head
Jacob Torrey 2023-06-20 14:35:06 -06:00
rodzic 700a6e3441
commit 7459d8aa48
3 zmienionych plików z 4326 dodań i 0 usunięć

4066
crossplag-report.xml 100644

File diff suppressed because one or more lines are too long

Wyświetl plik

@ -0,0 +1,87 @@
#!/usr/bin/env python3
import requests, re, os, time
from typing import Optional, Dict, Tuple
API_KEY = os.getenv('GPTZERO_APIKEY')
API_URL = 'https://j1o8u6du62.execute-api.eu-central-1.amazonaws.com/production/detect'
def make_req(text : str) -> Optional[Dict]:
headers = {
'Origin': 'https://app.crossplag.com'
}
data = {
'text': text,
}
res = requests.post(API_URL, headers=headers, json=data)
if res.status_code != 200:
print(res.text)
return None
return res.json().get('dataToreturn', {}).get('aiIndex', None)
def classify_text(s : str) -> Optional[Tuple[str, float]]:
res = make_req(s)
if res is None:
print("Unable to classify!")
return None
else:
#print(res)
try:
res = float(res)
except TypeError as e:
print("Unable to convert " + str(res) + " to float!")
if res > 0.5:
return ('AI', res)
else:
return ('Human', 1 - res)
def run_on_file_chunked(filename : str, chunk_size : int = 3000) -> Optional[Tuple[str, float]]:
'''
Given a filename (and an optional chunk size) returns the score for the contents of that file.
This function chunks the file into at most chunk_size parts to score separately, then returns an average. This prevents a very large input
overwhelming the model.
'''
with open(filename, 'r') as fp:
contents = fp.read()
return run_on_text_chunked(contents, chunk_size)
def run_on_text_chunked(contents : str, chunk_size : int = 3000) -> Optional[Tuple[str, float]]:
'''
Given a text (and an optional chunk size) returns the score for the contents of that string.
This function chunks the string into at most chunk_size parts to score separately, then returns an average. This prevents a very large input
overwhelming the model.
'''
# Remove extra spaces and duplicate newlines.
contents = re.sub(' +', ' ', contents)
contents = re.sub('\t', '', contents)
contents = re.sub('\n+', '\n', contents)
contents = re.sub('\n ', '\n', contents)
res = classify_text(contents)
if res is None:
time.sleep(5)
res = classify_text(contents)
return res
start = 0
end = 0
chunks = []
while start + chunk_size < len(contents) and end != -1:
end = contents.rfind(' ', start, start + chunk_size + 1)
chunks.append(contents[start:end])
start = end + 1
chunks.append(contents[start:])
scores = []
for c in chunks:
scores.append(classify_text(c))
ssum : float = 0.0
for s in scores:
if s[0] == 'AI':
ssum -= s[1]
else:
ssum += s[1]
sa : float = ssum / len(scores)
if sa < 0:
return ('AI', abs(sa))
else:
return ('Human', abs(sa))

Wyświetl plik

@ -0,0 +1,173 @@
#!/usr/bin/env python3
import pytest, os, jsonlines
from warnings import warn
from crossplag_detect import run_on_file_chunked, run_on_text_chunked
AI_SAMPLE_DIR = 'samples/llm-generated/'
HUMAN_SAMPLE_DIR = 'samples/human-generated/'
MIN_LEN = 150
NUM_JSONL_SAMPLES = 150
ai_files = os.listdir(AI_SAMPLE_DIR)
human_files = os.listdir(HUMAN_SAMPLE_DIR)
CONFIDENCE_THRESHOLD : float = 0.00 # What confidence to treat as error vs warning
def test_training_file(record_property):
res = run_on_file_chunked('ai-generated.txt')
if res is None:
pytest.skip('Unable to classify')
(classification, score) = res
record_property("score", str(score))
assert classification == 'AI', 'The training corpus should always be detected as AI-generated... since it is (score: ' + str(round(score, 8)) + ')'
@pytest.mark.parametrize('f', human_files)
def test_human_samples(f, record_property):
res = run_on_file_chunked(HUMAN_SAMPLE_DIR + f)
if res is None:
pytest.skip('Unable to classify')
(classification, score) = res
record_property("score", str(score))
if score > CONFIDENCE_THRESHOLD:
assert classification == 'Human', f + ' is a human-generated file, misclassified as AI-generated with confidence ' + str(round(score, 8))
else:
if classification != 'Human':
warn("Misclassified " + f + " with score of: " + str(round(score, 8)))
else:
warn("Unable to confidently classify: " + f)
@pytest.mark.parametrize('f', ai_files)
def test_llm_sample(f, record_property):
res = run_on_file_chunked(AI_SAMPLE_DIR + f)
if res is None:
pytest.skip('Unable to classify')
(classification, score) = res
record_property("score", str(score))
if score > CONFIDENCE_THRESHOLD:
assert classification == 'AI', f + ' is an LLM-generated file, misclassified as human-generated with confidence ' + str(round(score, 8))
else:
if classification != 'AI':
warn("Misclassified " + f + " with score of: " + str(round(score, 8)))
else:
warn("Unable to confidently classify: " + f)
HUMAN_JSONL_FILE = 'samples/webtext.test.jsonl'
human_samples = []
with jsonlines.open(HUMAN_JSONL_FILE) as reader:
for obj in reader:
human_samples.append(obj)
@pytest.mark.parametrize('i', human_samples[0:NUM_JSONL_SAMPLES])
def test_human_jsonl(i, record_property):
res = run_on_text_chunked(i.get('text', ''))
if res is None:
pytest.skip('Unable to classify')
(classification, score) = res
record_property("score", str(score))
assert classification == 'Human', HUMAN_JSONL_FILE + ':' + str(i.get('id')) + ' (len: ' + str(i.get('length', -1)) + ') is a human-generated sample, misclassified as AI-generated with confidence ' + str(round(score, 8))
AI_JSONL_FILE = 'samples/xl-1542M.test.jsonl'
ai_samples = []
with jsonlines.open(AI_JSONL_FILE) as reader:
for obj in reader:
ai_samples.append(obj)
@pytest.mark.parametrize('i', ai_samples[0:NUM_JSONL_SAMPLES])
def test_llm_jsonl(i, record_property):
res = run_on_text_chunked(i.get('text', ''))
if res is None:
pytest.skip('Unable to classify')
(classification, score) = res
record_property("score", str(score))
assert classification == 'AI', AI_JSONL_FILE + ':' + str(i.get('id')) + ' (text: ' + i.get('text', "").replace('\n', ' ')[:50] + ') is an LLM-generated sample, misclassified as human-generated with confidence ' + str(round(score, 8))
GPT3_JSONL_FILE = 'samples/GPT-3-175b_samples.jsonl'
gpt3_samples = []
with jsonlines.open(GPT3_JSONL_FILE) as reader:
for o in reader:
for l in o.split('<|endoftext|>'):
if len(l) >= MIN_LEN:
gpt3_samples.append(l)
@pytest.mark.parametrize('i', gpt3_samples[0:NUM_JSONL_SAMPLES])
def test_gpt3_jsonl(i, record_property):
res = run_on_text_chunked(i)
if res is None:
pytest.skip('Unable to classify')
(classification, score) = res
record_property("score", str(score))
assert classification == 'AI', GPT3_JSONL_FILE + ' is an LLM-generated sample, misclassified as human-generated with confidence ' + str(round(score, 8))
NEWS_JSONL_FILE = 'samples/news.jsonl'
news_samples = []
with jsonlines.open(NEWS_JSONL_FILE) as reader:
for obj in reader:
news_samples.append(obj)
@pytest.mark.parametrize('i', news_samples[0:NUM_JSONL_SAMPLES])
def test_humannews_jsonl(i, record_property):
res = run_on_text_chunked(i.get('human', ''))
if res is None:
pytest.skip('Unable to classify')
(classification, score) = res
record_property("score", str(score))
assert classification == 'Human', NEWS_JSONL_FILE + ' is a human-generated sample, misclassified as AI-generated with confidence ' + str(round(score, 8))
@pytest.mark.parametrize('i', news_samples[0:NUM_JSONL_SAMPLES])
def test_chatgptnews_jsonl(i, record_property):
res = run_on_text_chunked(i.get('chatgpt', ''))
if res is None:
pytest.skip('Unable to classify')
(classification, score) = res
record_property("score", str(score))
assert classification == 'AI', NEWS_JSONL_FILE + ' is a AI-generated sample, misclassified as human-generated with confidence ' + str(round(score, 8))
CHEAT_HUMAN_JSONL_FILE = 'samples/ieee-init.jsonl'
ch_samples = []
with jsonlines.open(CHEAT_HUMAN_JSONL_FILE) as reader:
for obj in reader:
if len(obj.get('abstract', '')) >= MIN_LEN:
ch_samples.append(obj)
@pytest.mark.parametrize('i', ch_samples[0:NUM_JSONL_SAMPLES])
def test_cheat_human_jsonl(i, record_property):
res = run_on_text_chunked(i.get('abstract', ''))
if res is None:
pytest.skip('Unable to classify')
(classification, score) = res
record_property("score", str(score))
assert classification == 'Human', CHEAT_HUMAN_JSONL_FILE + ':' + str(i.get('id')) + ' [' + str(len(i.get('abstract', ''))) + '] (title: ' + i.get('title', "").replace('\n', ' ')[:15] + ') is a human-generated sample, misclassified as AI-generated with confidence ' + str(round(score, 8))
CHEAT_GEN_JSONL_FILE = 'samples/ieee-chatgpt-generation.jsonl'
cg_samples = []
with jsonlines.open(CHEAT_GEN_JSONL_FILE) as reader:
for obj in reader:
if len(obj.get('abstract', '')) >= MIN_LEN:
cg_samples.append(obj)
@pytest.mark.parametrize('i', cg_samples[0:NUM_JSONL_SAMPLES])
def test_cheat_generation_jsonl(i, record_property):
res = run_on_text_chunked(i.get('abstract', ''))
if res is None:
pytest.skip('Unable to classify')
(classification, score) = res
record_property("score", str(score))
assert classification == 'AI', CHEAT_GEN_JSONL_FILE + ':' + str(i.get('id')) + ' (title: ' + i.get('title', "").replace('\n', ' ')[:50] + ') is an LLM-generated sample, misclassified as human-generated with confidence ' + str(round(score, 8))
CHEAT_POLISH_JSONL_FILE = 'samples/ieee-chatgpt-polish.jsonl'
cp_samples = []
with jsonlines.open(CHEAT_POLISH_JSONL_FILE) as reader:
for obj in reader:
if len(obj.get('abstract', '')) >= MIN_LEN:
cp_samples.append(obj)
@pytest.mark.parametrize('i', cp_samples[0:NUM_JSONL_SAMPLES])
def test_cheat_polish_jsonl(i, record_property):
res = run_on_text_chunked(i.get('abstract', ''))
if res is None:
pytest.skip('Unable to classify')
(classification, score) = res
record_property("score", str(score))
assert classification == 'AI', CHEAT_POLISH_JSONL_FILE + ':' + str(i.get('id')) + ' (title: ' + i.get('title', "").replace('\n', ' ')[:50] + ') is an LLM-generated sample, misclassified as human-generated with confidence ' + str(round(score, 8))