wmbusmeters/src/wmbus.h

524 wiersze
17 KiB
C++

/*
Copyright (C) 2017-2019 Fredrik Öhrström
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef WMBUS_H
#define WMBUS_H
#include"manufacturers.h"
#include"serial.h"
#include"util.h"
#include<inttypes.h>
#include<map>
// Check and remove the data link layer CRCs from a wmbus telegram.
// If the CRCs do not pass the test, return false.
bool trimCRCsFrameFormatA(std::vector<uchar> &payload);
bool trimCRCsFrameFormatB(std::vector<uchar> &payload);
#define LIST_OF_LINK_MODES \
X(Any,any,--anylinkmode,0xffff) \
X(C1,c1,--c1,0x1) \
X(S1,s1,--s1,0x2) \
X(S1m,s1m,--s1m,0x4) \
X(T1,t1,--t1,0x8) \
X(N1a,n1a,--n1a,0x10) \
X(N1b,n1b,--n1b,0x20) \
X(N1c,n1c,--n1c,0x40) \
X(N1d,n1d,--n1d,0x80) \
X(N1e,n1e,--n1e,0x100) \
X(N1f,n1f,--n1f,0x200) \
X(UNKNOWN,unknown,----,0x0)
// In link mode T1, the meter transmits a telegram every few seconds or minutes.
// Suitable for drive-by/walk-by collection of meter values.
// Link mode C1 is like T1 but uses less energy when transmitting due to
// a different radio encoding.
enum class LinkMode {
#define X(name,lcname,option,val) name,
LIST_OF_LINK_MODES
#undef X
};
enum LinkModeBits {
#define X(name,lcname,option,val) name##_bit = val,
LIST_OF_LINK_MODES
#undef X
};
LinkMode isLinkMode(const char *arg);
LinkMode isLinkModeOption(const char *arg);
struct LinkModeSet
{
// Add the link mode to the set of link modes.
void addLinkMode(LinkMode lm);
void unionLinkModeSet(LinkModeSet lms);
void disjunctionLinkModeSet(LinkModeSet lms);
// Does this set support listening to the given link mode set?
// If this set is C1 and T1 and the supplied set contains just C1,
// then supports returns true.
// Or if this set is just T1 and the supplied set contains just C1,
// then supports returns false.
// Or if this set is just C1 and the supplied set contains C1 and T1,
// then supports returns true.
// Or if this set is S1 and T1, and the supplied set contains C1 and T1,
// then supports returns true.
//
// It will do a bitwise and of the linkmode bits. If the result
// of the and is not zero, then support returns true.
bool supports(LinkModeSet lms);
// Check if this set contains the given link mode.
bool has(LinkMode lm);
// Check if all link modes are supported.
bool hasAll(LinkModeSet lms);
int bits() { return set_; }
// Return a human readable string.
std::string hr();
LinkModeSet() { }
LinkModeSet(int s) : set_(s) {}
private:
int set_ {};
};
LinkModeSet parseLinkModes(string modes);
enum class CONNECTION
{
MBUS, WMBUS, BOTH
};
enum class CI_TYPE
{
ELL, NWL, AFL, TPL
};
enum class TPL_LENGTH
{
NONE, SHORT, LONG
};
#define CC_B_BIDIRECTIONAL_BIT 0x80
#define CC_RD_RESPONSE_DELAY_BIT 0x40
#define CC_S_SYNCH_FRAME_BIT 0x20
#define CC_R_RELAYED_BIT 0x10
#define CC_P_HIGH_PRIO_BIT 0x08
// Bits 31-29 in SN, ie 0xc0 of the final byte in the stream,
// since the bytes arrive with the least significant first
// aka little endian.
#define SN_ENC_BITS 0xc0
#define LIST_OF_ELL_SECURITY_MODES \
X(NoSecurity, 0) \
X(AES_CTR, 1) \
X(RESERVED, 2)
enum class ELLSecurityMode {
#define X(name,nr) name,
LIST_OF_ELL_SECURITY_MODES
#undef X
};
int toInt(ELLSecurityMode esm);
const char *toString(ELLSecurityMode esm);
ELLSecurityMode fromIntToELLSecurityMode(int i);
#define LIST_OF_TPL_SECURITY_MODES \
X(NoSecurity, 0) \
X(MFCT_SPECIFIC, 1) \
X(DES_NO_IV_DEPRECATED, 2) \
X(DES_IV_DEPRECATED, 3) \
X(SPECIFIC_4, 4) \
X(AES_CBC_IV, 5) \
X(RESERVED_6, 6) \
X(AES_CBC_NO_IV, 7) \
X(AES_CTR_CMAC, 8) \
X(AES_CGM, 9) \
X(AES_CCM, 10) \
X(RESERVED_11, 11) \
X(RESERVED_12, 12) \
X(SPECIFIC_13, 13) \
X(RESERVED_14, 14) \
X(SPECIFIC_15, 15) \
X(SPECIFIC_16_31, 16)
enum class TPLSecurityMode {
#define X(name,nr) name,
LIST_OF_TPL_SECURITY_MODES
#undef X
};
int toInt(TPLSecurityMode tsm);
TPLSecurityMode fromIntToTPLSecurityMode(int i);
const char *toString(TPLSecurityMode tsm);
#define LIST_OF_AFL_AUTH_TYPES \
X(NoAuth, 0, 0) \
X(Reserved1, 1, 0) \
X(Reserved2, 2, 0) \
X(AES_CMAC_128_2, 3, 2) \
X(AES_CMAC_128_4, 4, 4) \
X(AES_CMAC_128_8, 5, 8) \
X(AES_CMAC_128_12, 6, 12) \
X(AES_CMAC_128_16, 7, 16) \
X(AES_GMAC_128_12, 8, 12)
enum class AFLAuthenticationType {
#define X(name,nr,len) name,
LIST_OF_AFL_AUTH_TYPES
#undef X
};
int toInt(AFLAuthenticationType aat);
AFLAuthenticationType fromIntToAFLAuthenticationType(int i);
const char *toString(AFLAuthenticationType aat);
int toLen(AFLAuthenticationType aat);
enum class MeasurementType
{
Unknown,
Instantaneous,
Minimum,
Maximum,
AtError
};
struct DVEntry
{
MeasurementType type {};
int value_information {};
int storagenr {};
int tariff {};
int subunit {};
string value;
DVEntry() {}
DVEntry(MeasurementType mt, int vi, int st, int ta, int su, string &val) :
type(mt), value_information(vi), storagenr(st), tariff(ta), subunit(su), value(val) {}
};
using namespace std;
struct MeterKeys
{
vector<uchar> confidentiality_key;
vector<uchar> authentication_key;
bool simulation {};
bool hasConfidentialityKey() { return confidentiality_key.size() > 0; }
bool hasAuthenticationKey() { return authentication_key.size() > 0; }
bool isSimulation() { return simulation; }
};
struct Telegram
{
// The meter address as a string usually printed on the meter.
string id;
// DLL
int dll_len {}; // The length of the telegram, 1 byte.
int dll_c {}; // 1 byte control code, SND_NR=0x44
uchar dll_mfct_b[2]; // 2 bytes
int dll_mfct {};
vector<uchar> dll_a; // A field 6 bytes
// The 6 a field bytes are composed of:
uchar dll_id_b[4] {}; // 4 bytes, address in BCD = 8 decimal 00000000...99999999 digits.
vector<uchar> dll_id; // 4 bytes, human readable order.
uchar dll_version {}; // 1 byte
uchar dll_type {}; // 1 byte
// ELL
uchar ell_ci {}; // 1 byte
uchar ell_cc {}; // 1 byte
uchar ell_acc {}; // 1 byte
uchar ell_sn_b[4] {}; // 4 bytes
int ell_sn {}; // 4 bytes
uchar ell_sn_session {}; // 4 bits
int ell_sn_time {}; // 25 bits
uchar ell_sn_sec {}; // 3 bits
ELLSecurityMode ell_sec_mode {}; // Based on 3 bits from above.
uchar ell_pl_crc_b[2] {}; // 2 bytes
uint16_t ell_pl_crc {}; // 2 bytes
uchar ell_mfct_b[2] {}; // 2 bytes;
int ell_mfct {};
bool ell_id_found {};
uchar ell_id_b[6] {}; // 4 bytes;
uchar ell_version {}; // 1 byte
uchar ell_type {}; // 1 byte
// NWL
int nwl_ci {}; // 1 byte
// AFL
uchar afl_ci {}; // 1 byte
uchar afl_len {}; // 1 byte
uchar afl_fc_b[2] {}; // 2 byte fragmentation control
uint16_t afl_fc {};
uchar afl_mcl {}; // 1 byte message control
bool afl_ki_found {};
uchar afl_ki_b[2] {}; // 2 byte key information
uint16_t afl_ki {};
bool afl_counter_found {};
uchar afl_counter_b[4] {}; // 4 bytes
uint32_t afl_counter {};
bool afl_mlen_found {};
int afl_mlen {};
bool must_check_mac {};
vector<uchar> afl_mac_b;
// TPL
vector<uchar>::iterator tpl_start;
int tpl_ci {}; // 1 byte
int tpl_acc {}; // 1 byte
int tpl_sts {}; // 1 byte
int tpl_cfg {}; // 2 bytes
TPLSecurityMode tpl_sec_mode {}; // Based on 5 bits extracted from cfg.
int tpl_num_encr_blocks {};
int tpl_cfg_ext {}; // 1 byte
int tpl_kdf_selection {}; // 1 byte
vector<uchar> tpl_generated_key; // 16 bytes
vector<uchar> tpl_generated_mac_key; // 16 bytes
bool tpl_id_found {}; // If set to true, then tpl_id_b contains valid values.
uchar tpl_id_b[4] {}; // 4 bytes
uchar tpl_mfct_b[2] {}; // 2 bytes
int tpl_mfct {};
uchar tpl_version {}; // 1 bytes
uchar tpl_type {}; // 1 bytes
// The format signature is used for compact frames.
int format_signature {};
vector<uchar> frame; // Content of frame, potentially decrypted.
vector<uchar> parsed; // Parsed bytes with explanations.
int header_size {}; // Size of headers before the APL content.
int suffix_size {}; // Size of suffix after the APL content. Usually empty, but can be MACs!
int mfct_0f_index = -1; // -1 if not found, else index of the 0f byte, if found, inside the difvif data after the header.
void extractFrame(vector<uchar> *fr); // Extract to full frame.
void extractPayload(vector<uchar> *pl); // Extract frame data containing the measurements, after the header and not the suffix.
void extractMfctData(vector<uchar> *pl); // Extract frame data after the DIF 0x0F.
bool handled {}; // Set to true, when a meter has accepted the telegram.
bool parseHeader(vector<uchar> &input_frame);
bool parse(vector<uchar> &input_frame, MeterKeys *mk);
void parserNoWarnings() { parser_warns_ = false; }
void print();
void verboseFields();
// A vector of indentations and explanations, to be printed
// below the raw data bytes to explain the telegram content.
vector<pair<int,string>> explanations;
void addExplanationAndIncrementPos(vector<uchar>::iterator &pos, int len, const char* fmt, ...);
void addMoreExplanation(int pos, const char* fmt, ...);
void explainParse(string intro, int from);
bool isSimulated() { return is_simulated_; }
void expectVersion(const char *info, int v);
// Extracted mbus values.
std::map<std::string,std::pair<int,DVEntry>> values;
private:
bool is_simulated_ {};
bool parser_warns_ = true;
MeterKeys *meter_keys {};
bool parseDLL(std::vector<uchar>::iterator &pos);
bool parseELL(std::vector<uchar>::iterator &pos);
bool parseNWL(std::vector<uchar>::iterator &pos);
bool parseAFL(std::vector<uchar>::iterator &pos);
bool parseTPL(std::vector<uchar>::iterator &pos);
void printDLL();
void printELL();
void printNWL();
void printAFL();
void printTPL();
bool parse_TPL_72(vector<uchar>::iterator &pos);
bool parse_TPL_78(vector<uchar>::iterator &pos);
bool parse_TPL_79(vector<uchar>::iterator &pos);
bool parse_TPL_7A(vector<uchar>::iterator &pos);
bool potentiallyDecrypt(vector<uchar>::iterator &pos);
bool parseTPLConfig(std::vector<uchar>::iterator &pos);
static string toStringFromELLSN(int sn);
static string toStringFromTPLConfig(int cfg);
static string toStringFromAFLFC(int fc);
static string toStringFromAFLMC(int mc);
bool parseShortTPL(std::vector<uchar>::iterator &pos);
bool parseLongTPL(std::vector<uchar>::iterator &pos);
bool checkMAC(std::vector<uchar> &frame,
std::vector<uchar>::iterator from,
std::vector<uchar>::iterator to,
std::vector<uchar> &mac,
std::vector<uchar> &mackey);
bool findFormatBytesFromKnownMeterSignatures(std::vector<uchar> *format_bytes);
};
struct Meter;
#define LIST_OF_MBUS_DEVICES \
X(DEVICE_UNKNOWN) \
X(DEVICE_CUL)\
X(DEVICE_D1TC)\
X(DEVICE_IM871A)\
X(DEVICE_AMB8465)\
X(DEVICE_RFMRX2)\
X(DEVICE_SIMULATOR)\
X(DEVICE_RTLWMBUS)\
X(DEVICE_RTL433)\
X(DEVICE_RAWTTY)\
X(DEVICE_WMB13U)
enum WMBusDeviceType {
#define X(name) name,
LIST_OF_MBUS_DEVICES
#undef X
};
struct WMBus
{
virtual WMBusDeviceType type() = 0;
virtual bool ping() = 0;
virtual uint32_t getDeviceId() = 0;
virtual LinkModeSet getLinkModes() = 0;
virtual LinkModeSet supportedLinkModes() = 0;
virtual int numConcurrentLinkModes() = 0;
virtual bool canSetLinkModes(LinkModeSet lms) = 0;
virtual void setMeters(vector<unique_ptr<Meter>> *meters) = 0;
virtual void setLinkModes(LinkModeSet lms) = 0;
virtual void onTelegram(function<bool(vector<uchar>)> cb) = 0;
virtual SerialDevice *serial() = 0;
virtual void simulate() = 0;
// Close any underlying ttys or software and restart/reinitialize.
// Return true if ok.
virtual bool reset() = 0;
virtual ~WMBus() = 0;
};
struct Detected
{
WMBusDeviceType type; // IM871A, AMB8465 etc
string devicefile; // /dev/ttyUSB0 /dev/ttyACM0 stdin simulation_abc.txt telegrams.raw
int baudrate; // If the suffix is a number, store the number here.
// If the override_tty is true, then do not allow the wmbus driver to open the tty,
// instead open the devicefile first. This is to allow feeding the wmbus drivers using stdin
// or a file or for internal testing.
bool override_tty;
};
Detected detectWMBusDeviceSetting(string devicefile, string suffix,
SerialCommunicationManager *manager);
unique_ptr<WMBus> openIM871A(string device, SerialCommunicationManager *manager,
unique_ptr<SerialDevice> serial_override);
unique_ptr<WMBus> openAMB8465(string device, SerialCommunicationManager *manager,
unique_ptr<SerialDevice> serial_override);
unique_ptr<WMBus> openRawTTY(string device, int baudrate, SerialCommunicationManager *manager,
unique_ptr<SerialDevice> serial_override);
unique_ptr<WMBus> openRTLWMBUS(string device, SerialCommunicationManager *manager, std::function<void()> on_exit,
unique_ptr<SerialDevice> serial_override);
unique_ptr<WMBus> openRTL433(string device, SerialCommunicationManager *manager, std::function<void()> on_exit,
unique_ptr<SerialDevice> serial_override);
unique_ptr<WMBus> openCUL(string device, SerialCommunicationManager *manager,
unique_ptr<SerialDevice> serial_override);
unique_ptr<WMBus> openD1TC(string device, SerialCommunicationManager *manager,
unique_ptr<SerialDevice> serial_override);
unique_ptr<WMBus> openWMB13U(string device, SerialCommunicationManager *manager,
unique_ptr<SerialDevice> serial_override);
unique_ptr<WMBus> openSimulator(string file, SerialCommunicationManager *manager,
unique_ptr<SerialDevice> serial_override);
string manufacturer(int m_field);
string manufacturerFlag(int m_field);
string mediaType(int a_field_device_type);
string mediaTypeJSON(int a_field_device_type);
bool isCiFieldOfType(int ci_field, CI_TYPE type);
int ciFieldLength(int ci_field);
string ciType(int ci_field);
string cType(int c_field);
string ccType(int cc_field);
string difType(int dif);
double vifScale(int vif);
string vifKey(int vif); // E.g. temperature energy power mass_flow volume_flow
string vifUnit(int vif); // E.g. m3 c kwh kw MJ MJh
string vifType(int vif); // Long description
string vifeType(int dif, int vif, int vife); // Long description
string formatData(int dif, int vif, int vife, string data);
double extract8bitAsDouble(int dif, int vif, int vife, string data);
double extract16bitAsDouble(int dif, int vif, int vife, string data);
double extract32bitAsDouble(int dif, int vif, int vife, string data);
int difLenBytes(int dif);
MeasurementType difMeasurementType(int dif);
string linkModeName(LinkMode link_mode);
string measurementTypeName(MeasurementType mt);
AccessCheck findAndDetect(SerialCommunicationManager *manager,
string *out_device,
function<AccessCheck(string,SerialCommunicationManager*)> check,
string dongle_name,
string device_root);
AccessCheck checkAccessAndDetect(SerialCommunicationManager *manager,
function<AccessCheck(string,SerialCommunicationManager*)> check,
string dongle_name,
string device);
enum FrameStatus { PartialFrame, FullFrame, ErrorInFrame, TextAndNotFrame };
FrameStatus checkWMBusFrame(vector<uchar> &data,
size_t *frame_length,
int *payload_len_out,
int *payload_offset);
AccessCheck detectIM871A(string device, SerialCommunicationManager *handler);
AccessCheck detectAMB8465(string device, SerialCommunicationManager *handler);
AccessCheck detectRawTTY(string device, int baud, SerialCommunicationManager *handler);
AccessCheck detectRTLSDR(string device, SerialCommunicationManager *handler);
AccessCheck detectCUL(string device, SerialCommunicationManager *handler);
AccessCheck detectWMB13U(string device, SerialCommunicationManager *handler);
// Try to factory reset an AMB8465 by trying all possible serial speeds and
// restore to factory settings.
AccessCheck factoryResetAMB8465(string device, SerialCommunicationManager *handler, int *was_baud);
#endif