/*
Copyright (C) 2018-2020 Fredrik Öhrström (gpl-3.0-or-later)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
Implemented October 2020 Janus Bo Andersen:
Implements Kamstrup OmniPower, energy meter.
This C1 WM-Bus meter broadcasts:
- Accumulated energy consumption (A+, kWh)
- Accumulated energy production (A-, kWh)
- Current power consumption (P+, kW)
- Current power production (P-, kW)
According to Kamstrup doc. 58101496_C1_GB_05.2018
(Wireless M-Bus Module for OMNIPOWER), the single-phase,
three-phase and CT meters send the same datagram.
Meter version. Implementation tested against meter:
Kamstrup one-phase with firmware version 0x30.
Encryption:
Meter uses AES-128 in CTR mode, which is the only mode supported by
the extended link layer (wm-bus), see EN 13757-4:2019.
Security mode is set during instatiation as
TPLSecurityMode::AES_CBC_IV, but this is overridden anyway when
reading the 3 ENC bits using the function in the wmbus.cc file.
*/
#include"dvparser.h"
#include"meters.h"
#include"meters_common_implementation.h"
#include"wmbus.h"
#include"wmbus_utils.h"
#include"util.h"
struct MeterOmnipower : public virtual MeterCommonImplementation {
MeterOmnipower(MeterInfo &mi);
double totalEnergyConsumption(Unit u);
double totalEnergyBackward(Unit u);
double powerConsumption(Unit u);
double powerBackward(Unit u);
private:
void processContent(Telegram *t);
double total_energy_kwh_{};
double total_energy_backward_kwh_{};
double power_kw_{};
double power_backward_kw_{};
};
shared_ptr createOmnipower(MeterInfo &mi)
{
return shared_ptr(new MeterOmnipower(mi));
}
MeterOmnipower::MeterOmnipower(MeterInfo &mi) :
MeterCommonImplementation(mi, "omnipower")
{
setMeterType(MeterType::ElectricityMeter);
setExpectedTPLSecurityMode(TPLSecurityMode::AES_CBC_IV);
addLinkMode(LinkMode::C1);
addPrint("total_energy_consumption", Quantity::Energy,
[&](Unit u){ return totalEnergyConsumption(u); },
"The total energy consumption recorded by this meter.",
PrintProperty::FIELD | PrintProperty::JSON);
addPrint("total_energy_production", Quantity::Energy,
[&](Unit u){ return totalEnergyBackward(u); },
"The total energy backward (production) recorded by this meter.",
PrintProperty::FIELD | PrintProperty::JSON);
addPrint("current_power_consumption", Quantity::Power,
[&](Unit u){ return powerConsumption(u); },
"The current power consumption on this meter.",
PrintProperty::FIELD | PrintProperty::JSON);
addPrint("current_power_production", Quantity::Power,
[&](Unit u){ return powerBackward(u); },
"The current power backward on this meter.",
PrintProperty::FIELD | PrintProperty::JSON);
}
double MeterOmnipower::totalEnergyConsumption(Unit u)
{
assertQuantity(u, Quantity::Energy);
return convert(total_energy_kwh_, Unit::KWH, u);
}
double MeterOmnipower::totalEnergyBackward(Unit u)
{
assertQuantity(u, Quantity::Energy);
return convert(total_energy_backward_kwh_, Unit::KWH, u);
}
double MeterOmnipower::powerConsumption(Unit u)
{
assertQuantity(u, Quantity::Power);
return convert(power_kw_, Unit::KW, u);
}
double MeterOmnipower::powerBackward(Unit u)
{
assertQuantity(u, Quantity::Power);
return convert(power_backward_kw_, Unit::KW, u);
}
void MeterOmnipower::processContent(Telegram *t)
{
// Data Record header established from telegram analysis
// 04 04 (32 bit uint) Energy 10^1 Wh (consumption), A+
// 04 84 3C (32 bit uint) Energy 10^1 Wh (production), A-
// 04 2B (32 bit uint) Power 10^0 W (consumption), P+
// 04 AB 3C (32 bit uint) Power 10^0 W (production), P-
/*
(omnipower) 14: 04 dif (32 Bit Integer/Binary Instantaneous value)
(omnipower) 15: 04 vif (Energy 10¹ Wh)
(omnipower) 16: * 1A030000 total energy (7.940000 kwh)
(omnipower) 1a: 04 dif (32 Bit Integer/Binary Instantaneous value)
(omnipower) 1b: 84 vif (Energy 10¹ Wh)
(omnipower) 1c: 3C vife (backward flow)
(omnipower) 1d: * 00000000 total energy backward (0.000000 kwh)
(omnipower) 21: 04 dif (32 Bit Integer/Binary Instantaneous value)
(omnipower) 22: 2B vif (Power W)
(omnipower) 23: * 03000000 current power (0.003000 kw)
(omnipower) 27: 04 dif (32 Bit Integer/Binary Instantaneous value)
(omnipower) 28: AB vif (Power W)
(omnipower) 29: 3C vife (backward flow)
(omnipower) 2a: * 00000000 current power (0.000000 kw)
*/
int offset;
extractDVdouble(&t->values, "0404", &offset, &total_energy_kwh_);
t->addMoreExplanation(offset, " total energy (%f kwh)", total_energy_kwh_);
extractDVdouble(&t->values, "04843C", &offset, &total_energy_backward_kwh_);
t->addMoreExplanation(offset, " total energy backward (%f kwh)", total_energy_backward_kwh_);
extractDVdouble(&t->values, "042B", &offset, &power_kw_);
t->addMoreExplanation(offset, " current power (%f kw)", power_kw_);
extractDVdouble(&t->values, "04AB3C", &offset, &power_backward_kw_);
t->addMoreExplanation(offset, " current power (%f kw)", power_backward_kw_);
}