wmbusmeters/src/units.h

304 wiersze
12 KiB
C

/*
Copyright (C) 2019-2022 Fredrik Öhrström (gpl-3.0-or-later)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef UNITS_H
#define UNITS_H
#include<string>
#include<vector>
#include<cstdint>
// A named quantity has a preferred unit,
// ie Volume has m3 (cubic meters) Energy has kwh, Power has kw.
// We search for quantities in the mbus telegrams instead of
// hard coding a specific unit. This is useful since some
// meters can send either mj or kwh depending on their configuration.
#define LIST_OF_QUANTITIES \
X(Time,Hour) \
X(Length,M) \
X(Mass,KG) \
X(Amperage,Ampere) \
X(Temperature,C) \
X(AmountOfSubstance,MOL) \
X(LuminousIntensity,CD) \
\
X(Energy,KWH) \
X(Reactive_Energy,KVARH) \
X(Apparent_Energy,KVAH) \
X(Power,KW) \
\
X(Volume,M3) \
X(Flow,M3H) \
\
X(Voltage,Volt) \
X(Frequency,HZ) \
X(Pressure,BAR) \
\
2021-08-26 10:51:59 +00:00
X(PointInTime,DateTimeLT) \
\
X(RelativeHumidity,RH) \
X(HCA,HCA) \
X(Text,TXT) \
X(Angle,DEGREE) \
X(Dimensionless,COUNTER) \
enum class Quantity
{
#define X(quantity,default_unit) quantity,
LIST_OF_QUANTITIES
#undef X
Unknown
};
// A named unit (Unit) is a recurring unit that is useful to represent values
// sent in mbus telegrams. A named unit can be translated into an SIUnit
// which is unnamed and can encode any combination of SI units & scale.
// The SIUnits are used inside formulas. Eventually a successful formula
// calculation will map the final SI Unit to a named unit.
#define LIST_OF_UNITS \
X(Second,s,"s",Time,"second") \
X(M,m,"m",Length,"meter") \
X(KG,kg,"kg",Mass,"kilogram") \
2022-11-01 11:14:48 +00:00
X(Ampere,a,"A",Amperage,"ampere") \
X(K,k,"K",Temperature,"kelvin") \
2022-11-01 11:14:48 +00:00
X(MOL,mol,"mol",AmountOfSubstance,"mole") \
X(CD,cd,"cd",LuminousIntensity,"candela") \
\
2022-11-01 11:14:48 +00:00
X(KWH,kwh,"kWh",Energy,"kilo Watt hour") \
X(MJ,mj,"MJ",Energy,"Mega Joule") \
X(GJ,gj,"GJ",Energy,"Giga Joule") \
X(KVARH,kvarh,"kVARh",Reactive_Energy,"kilo volt amperes reactive hour") \
X(KVAH,kvah,"kVAh",Apparent_Energy,"kilo volt amperes hour") \
X(M3C,m3c,"m³°C",Energy,"cubic meter celsius") \
\
X(KW,kw,"kW",Power,"kilo Watt") \
2022-12-12 16:41:22 +00:00
X(M3CH,m3ch,"m³°C/h",Power,"cubic meter celsius per hour") \
\
2022-11-01 11:14:48 +00:00
X(M3,m3,"",Volume,"cubic meter") \
X(L,l,"l",Volume,"litre") \
X(M3H,m3h,"m³/h",Flow,"cubic meters per hour") \
X(LH,lh,"l/h",Flow,"liters per hour") \
\
2022-11-01 11:14:48 +00:00
X(C,c,"°C",Temperature,"celsius") \
X(F,f,"°F",Temperature,"fahrenheit") \
\
X(Volt,v,"V",Voltage,"volt") \
X(HZ,hz,"Hz",Frequency,"hz") \
X(PA,pa,"pa",Pressure,"pascal") \
X(BAR,bar,"bar",Pressure,"bar") \
\
2022-11-01 11:14:48 +00:00
X(Minute,min,"min",Time,"minute") \
X(Hour,h,"h",Time,"hour") \
X(Day,d,"d",Time,"day") \
X(Month,month,"month",Time,"month") \
2022-11-01 11:14:48 +00:00
X(Year,y,"y",Time,"year") \
X(UnixTimestamp,ut,"ut",PointInTime,"unix timestamp") \
2022-11-01 11:14:48 +00:00
X(DateTimeUTC,utc,"utc",PointInTime,"coordinated universal time") \
X(DateTimeLT,datetime,"datetime",PointInTime,"local time") \
X(DateLT,date,"date",PointInTime,"local date") \
X(TimeLT,time,"time",PointInTime,"local time") \
\
X(RH,rh,"RH",RelativeHumidity,"relative humidity") \
X(HCA,hca,"hca",HCA,"heat cost allocation") \
X(TXT,txt,"txt",Text,"text") \
X(DEGREE,deg,"°",Angle,"degree") \
X(RADIAN,rad,"rad",Angle,"radian") \
2023-02-21 20:03:08 +00:00
X(COUNTER,counter,"counter",Dimensionless,"counter") \
X(FACTOR,factor,"factor",Dimensionless,"factor") \
X(NUMBER,nr,"number",Dimensionless,"number") \
X(PERCENTAGE,pct,"percentage",Dimensionless,"percentage") \
enum class Unit
{
#define X(cname,lcname,hrname,quantity,explanation) cname,
LIST_OF_UNITS
#undef X
Unknown
};
// The SIUnit is used inside formulas and for conversion between units.
// Any numeric named Unit can be expressed using an SIUnit.
// Most SIUnits do not have a corresponding named Unit.
// However the result of a formula calculation or conversion will
// be eventually converted into a named unit. So even if you
// are allowed to write a formula: 9 kwh * 6 kwh which generates
// the unit kwh² which is not explicitly named above,
// you cannot assign this value to any calculated field since kwh^2
// is not named. However you can do: sqrt(10 kwh * 10 kwh) which
// will generated an SIUnit which is equivalent to kwh.
//
// Other valid formulas are for example:
// energy_kwh = 100 kw * 22 h
// flow_m3h = 100 m3 / 5 h
//
// We can only track units raised to the power of 127 or -128.
// The struct SIExp below is used to track the exponents of the units.
//
struct SIExp
{
SIExp &s(int8_t i) { s_ = i; return *this; }
SIExp &m(int8_t i) { m_ = i; return *this; }
SIExp &kg(int8_t i) { kg_ = i; return *this; }
SIExp &a(int8_t i) { a_ = i; return *this; }
SIExp &mol(int8_t i) { mol_ = i; return *this; }
SIExp &cd(int8_t i) { cd_ = i; return *this; }
SIExp &k(int8_t i) { k_ = i; if (k_ != 0 && (c_ != 0 || f_ != 0)) { invalid_ = true; } return *this; }
SIExp &c(int8_t i) { c_ = i; if (c_ != 0 && (k_ != 0 || f_ != 0)) { invalid_ = true; } return *this; }
SIExp &f(int8_t i) { f_ = i; if (f_ != 0 && (k_ != 0 || c_ != 0)) { invalid_ = true; } return *this; }
SIExp &month(int8_t i) { month_ = i; return *this; }
SIExp &year(int8_t i) { year_ = i; return *this; }
SIExp &unixTimestamp(int8_t i) { unix_timestamp_ = i; return *this; }
int8_t s() const { return s_; }
int8_t m() const { return m_; }
int8_t kg() const { return kg_; }
int8_t a() const { return a_; }
int8_t mol() const { return mol_; }
int8_t cd() const { return cd_; }
int8_t k() const { return k_; }
int8_t c() const { return c_; }
int8_t f() const { return f_; }
int8_t month() const { return month_; }
int8_t year() const { return year_; }
int8_t unixTimestamp() const { return unix_timestamp_; }
SIExp mul(const SIExp &e) const;
SIExp div(const SIExp &e) const;
SIExp sqrt() const;
int8_t safe_add(int8_t a, int8_t b);
int8_t safe_sub(int8_t a, int8_t b);
int8_t safe_div2(int8_t a);
bool operator==(const SIExp &e) const;
bool operator!=(const SIExp &e) const;
std::string str() const;
static SIExp build() { return SIExp(); }
private:
int8_t s_ {};
int8_t m_ {};
int8_t kg_ {};
int8_t a_ {};
int8_t mol_ {};
int8_t cd_ {};
int8_t k_ {};
int8_t c_ {}; // Why c and f here? Because they are offset against K.
int8_t f_ {}; // Since SIUnits are also used for conversions of values, not just unit tracking,
// this means that the offset units (c,f) must be treated as distinct units.
// E.g. if you calculated m3*k (and forget the m3 and k value) then you
// cannot convert this value into m3*c since the offset makes the calculation
// depend on the k value, which we no longer know.
// But kw*h can be translated into kw*s since scaling (*3600) can be done on the
// calculated value without knowing the h value. Therefore we have to
// treat k, c and f as distinct units. I.e. you cannot add m3*k+m3*f+m3*c.
int8_t month_ {}; // Why month and year here instead of using s? Because they vary in length and thus cannot
int8_t year_ {}; // be auto-converted to seconds, ie you cannot add/subtract months/years without knowing what you add to.
int8_t unix_timestamp_ {}; // Why not s? Because point in time is referenced agains an offset. UT is 1970-01-01 01:00.
// If exponents have over/underflowed or if multiple of (k,c,f) (month,year,unix_timestamp) are set,
// then the SIExp is not valid any more!
bool invalid_ = false;
};
enum class MathOp
{
ADD, SUB
};
2022-11-01 11:14:48 +00:00
struct SIUnit
{
// Transform a double,double,uint64_t into an SIUnit.
// The exp can be created compile time like this: SIUNIT(3.6E6, 0, SI_KG(1)|SI_M(2)|SI_S(-2)) which is kwh.
SIUnit(Quantity q, double scale, SIExp exponents) :
quantity_(q), scale_(scale), exponents_(exponents) {}
2022-11-01 11:14:48 +00:00
// Transform a named unit into an SIUnit.
SIUnit(Unit);
// Parse string like: 3.6E106*kg*m^2*s^-3*a^1 (ie volt)
SIUnit(std::string s);
// Return the known unit that best matches the SIUnit, or Unit::Unknown if none.
Unit asUnit() const ;
2022-11-01 11:14:48 +00:00
// Return the known unit that best matches the SIUnit and the quantity, or Unit::Unknown if none.
Unit asUnit(Quantity q) const;
2022-11-01 11:14:48 +00:00
// Return the quantity that this unit is used for.
Quantity quantity() const { return quantity_; }
// Get the scale.
double scale() const { return scale_; }
// Get the exponents.
const SIExp &exp() const { return exponents_; }
2022-11-01 11:14:48 +00:00
// Return a string like 3.6⁶s⁻²m²kg
std::string str() const;
2022-11-01 11:14:48 +00:00
// Return a detailed string like: kwh[3.6⁶s⁻²m²kg]Energy
std::string info() const;
2022-11-01 11:14:48 +00:00
// Check if the exponents (ie units) are the same.
bool sameExponents(SIUnit &to_siunit) const { return exponents_ == to_siunit.exponents_; }
// Convert value from this unit to another unit and store it in out. Return false if conversion is impossible!
bool convertTo(double left, const SIUnit &out_siunit, double *out) const;
// Do a math op. Store the resulting unit and value into the destination pointers.
// Return false if the addion cannot be performed.
bool mathOpTo(MathOp op, double left, double right, const SIUnit &right_siunit, SIUnit *out_siunit, double *out) const;
2022-11-01 11:14:48 +00:00
// Multiply this unit with another unit.
SIUnit mul(const SIUnit &m) const ;
// Dividethis unit with another unit.
SIUnit div(const SIUnit &m) const ;
// Square root this unit.
SIUnit sqrt() const ;
2022-11-01 11:14:48 +00:00
private:
Quantity quantity_;
double scale_;
SIExp exponents_;
2022-11-01 11:14:48 +00:00
};
bool canConvert(Unit from, Unit to);
double convert(double v, Unit from, Unit to);
Unit whenMultiplied(Unit left, Unit right);
double multiply(double l, Unit left, double r, Unit right);
// Used to convert protocol KWH to KVARH/KVA, strictly speaking
// not a valid conversion, but permitted to work around limitations in the mbus protocol usage.
bool overrideConversion(Unit from, Unit to);
// Either uppercase KWH or lowercase kwh works here.
Unit toUnit(std::string s);
2023-10-13 14:30:29 +00:00
Quantity toQuantity(std::string s);
const SIUnit &toSIUnit(Unit u);
const char *toString(Quantity q);
bool isQuantity(Unit u, Quantity q);
Quantity toQuantity(Unit u);
void assertQuantity(Unit u, Quantity q);
Unit defaultUnitForQuantity(Quantity q);
std::string unitToStringHR(Unit u);
std::string unitToStringLowerCase(Unit u);
std::string unitToStringUpperCase(Unit u);
2019-05-04 17:56:17 +00:00
std::string valueToString(double v, Unit u);
bool extractUnit(const std::string &s, std::string *vname, Unit *u);
#define X(cname,lcname,hrname,quantity,explanation) extern const SIUnit SI_##cname;
LIST_OF_UNITS
#undef X
2022-11-01 11:14:48 +00:00
2023-11-12 11:36:22 +00:00
const char *availableQuantities();
const char *availableUnits();
#endif